worst of all, if its lift-off were less than perfect it would miss its rendezvous with the parent craft and doom the astronauts to a slow death – meant that this option was not seriously considered.

By contrast, a missed rendezvous in Earth orbit would merely mean a failed mission, with the astronauts being brought safely home. So Houbolt’s arguments that LOR was much simpler than EOR, and that his plan meant taking 7000 pounds (3,200 kg) instead of 150,000 pounds (68,000 kg) down to the lunar surface, were at first discounted.

Slowly, however, the Manned Spacecraft Center at Houston, led by Brainerd Holmes, who was brought in to head the programme after successfully completing the then RCA’s Ballistic Missile Early Warning System (during which air and defence correspondents like myself had been immensely impressed by his abilities), were won over to LOR. Its over-riding advantage was that only one Saturn 5 rocket would be needed for a complete moonlanding mission instead of two for EOR, and the savings in time and cost were enormous. It soon became clear that it was the only way in which a moonlanding could be accomplished within the decade.

But the Marshall Space Flight Center at Huntsville stubbornly adhered to its view that EOR was the way to go. Brainerd Holmes decided that von Braun must be won over. A shrewd negotiator, he realised that LOR would mean a substantial loss of work for the rocket centre, so he arranged for his deputy, Joseph Shea, to invite von Braun to Washington to point out to him that, if EOR were chosen, Houston would be overloaded with work. “It just seems natural to Brainerd and me that you guys ought to start getting involved in the lunar base and the roving vehicle, and some of the other spacecraft stuff.”

NASA’s historians say that Wernher, who was known to have wanted for a long time to get into spacecraft design and not be confined to launch rockets, “kind of tucked that in the back of his mind and went to Huntsville”.

Two months later came the conversion. At an all-day conference in June, when a final decision was desperately overdue, all the presentations by von Braun’s lieutenants still favoured EOR. Their German leader sat listening and making notes for six hours. Then he got up and made a 15-minute speech which shocked his staff but finally settled the issue. “Our general conclusion,” he said, “is that all four modes [under discussion for reaching the Moon] are technically feasible and could be implemented with enough time and money.” He then listed what he called “Marshall’s preferences”: 1) lunar orbit rendezvous; 2) Earth orbit rendezvous, using the refuelling technique; 3) direct flight with a Saturn 5, using a lightweight spacecraft and high energy propellants; and 4) direct flight with a Nova or Saturn C8 rocket.

His staff listened open-mouthed while von Braun said he readily admitted that when first exposed to the LOR proposal they were “a bit sceptical”, but so was the Manned Spacecraft Center at Houston. It had taken quite a while to substantiate the feasibility of the method and finally endorse it. So it could be concluded that the issue of “invented here” or “not invented here” did not apply to either of the centers; both had actually embraced a scheme suggested by a third source!

Shea’s headquarters staff then costed the four contending modes of approach to the Moon, and reached the satisfying conclusion that LOR would cost almost $1.5 billion less than either EOR or direct flight – $9.5 billion versus $10.6 billion. On 11 July 1962 the media was told at a news conference that the NASA centers were unanimously of the opinion that a moonlanding was to be accomplished by means of a lunar orbit rendezvous. Not for the first time, nor the last, the abrupt change of policy came as a shock to space correspondents like myself. In this case we had been subjected to innumerable briefings stressing the hazards of such an approach. But Brainerd Holmes told the American Rocket Society a few days later: “Essentially we have now ‘lifted off’ and are on our way.” Events proved that he was right.

The Soviets planned to use the Earth orbit rendezvous technique to assemble a larger spacecraft. This would then take their cosmonauts to the moon.

Project Mercury

John Glenn personified the relationship between the development of jet aircraft and the exploration of outer space. Born on 18 July 1921 in New Concord, Ohio, he grew up during the Depression and in April 1941 joined a civilian pilot training scheme while he was at college.

In June 1941 he gained his private pilot’s licence. After the Japanese attack on Pearl Harbor, he joined the Army Air Corps. He began training and was commissioned into the US Marine Corps in 1943, serving in a Marine fighter squadron. He flew 59 combat missions in the Pacific, air to ground strikes in F4U Corsairs.

His next posting was testing combat aircraft for Grumman. By the end of the war he had been promoted to captain and was offered a regular commission which he accepted. He joined a US mission to the Nationalist Chinese, in support of the Marshall peace initiative, flying reconnaissance patrols. By 1948 Glenn was serving as an instructor in an advanced training unit based at Corpus Christi, Texas, flying jets, the Lockheed P80 Shooting Star. He was sent to Korea in October 1952 where he flew F9 Panthers on close support missions. In 1953 he was attached to the USAF, flying fighter interceptors, the F-86. In the final days of the war he shot down three Chinese MIG jet fighters.

Posted to the Naval Air Test Centre (NATC) at Patuxent River, Maryland, he graduated as a test pilot in July 1954 and was transferred to the fighter design branch of the Naval Aeronautics Department. In 1957 he personally broke the existing supersonic transcontinental speed record, flying 2,445 miles from coast to coast of the United States. His flight involved air-to-air refuelling three times and broke the record by 21 minutes.

Early in 1958 Glenn voluntered for part-time work on an experimental programme based at the NACA research centre at Langley. When NASA was formed from NACA, Glenn was well placed to learn that he fitted the profile for manned space flight. His age, weight, height, education and experience were suitable although he had to lose 30 lb. On 17 December 1958 NASA announced the name of the project: Mercury.

NASA was looking for test pilots on active duty, preferably with combat experience and clean records. Glenn reported for tests at the Lovelace Clinic, Albuquerque, New Mexico. Glenn:

Lovelace was a diagnostic hospital specializing in aerospace medicine. It had been founded by Dr W. Randolph Lovelace II, a prominent space scientist and chairman of the NASA life sciences committee, who had conducted high-altitude and pressure suit experimental work at Wright-Patterson Air Force Base. The clinic was private, but there was a strong military flavor to its administration, which was directed by Dr A.H. Schwichtenberg, a retired Air Force general. The doctors, led by Lovelace, were a hard-nosed group, or so it seemed to those of us they were poking, probing, and evaluating.

For over a week they made every kind of measurement and did every kind of test on the human body, inside and out, that medical science knew of or could imagine. Nobody really knew what that body would go through in space, so Lovelace and his team tried everything. They drew blood, took urine and stool samples, scraped our throats, measured the contents of our stomachs, gave us barium enemas, and submerged us in water tanks to record our total body volume. They shone lights into our eyes, ears, noses, and everywhere else. They measured our heart and pulse rates, blood pressure, brain waves, and muscular reactions to electric current. Their examination of the lower bowel was the most uncomfortable procedure I had ever experienced, a sigmoidal probe with a device those of us who were tested nicknamed the “Steel Eel.” Wires and tubes dangled from us like tentacles from jellyfish. Nobody wanted to tell us what some of the stranger tests were for.

Doctors are the natural enemies of pilots. Pilots like to fly; and doctors frequently turn up reasons why they can’t. I didn’t find the tests as humiliating or infuriating as some of the other candidates did. Pete Conrad was so incensed by having to rush through the hospital’s public hallways “in distress” that he told General Schwichtenberg he wasn’t giving himself any more enemas – and deposited his enema bag on the general’s desk for emphasis. He didn’t get chosen for the space program until later. But I thought the tests, obnoxious as they were, were fascinating for the most part. It was all in the interests of science, and going into space was going to be one of the greatest scientific adventures of all time.

After eight days at Lovelace, one candidate washed out for medical reasons and the rest of us, again in small groups, received orders sending us to Wright-Patterson and the Wright Air Development Center’s

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×