determined that the thrusters system was poorly designed, allowing Neil’s propellant to leak out.

This was the second time Neil had ejected from an aircraft. The first had been in Korea, when he had nursed his flak-damaged plane back across American lines to bail out over friendly territory. Apparently Neil had waited to the bitter end, trying to make it to an emergency landing strip. His tendency to hang on to crippled flying machines had shown up again in 1962 when he had a flameout on the X-15 rocket plane out at Edwards. He’d ridden that stubby-wing aircraft almost down to the dry lake-bed before getting the engines lit. Neil just didn’t like to abort a flight.

Apollo 8 flies around the moon

Apollo 8 was the first spacecraft launched by the larger Saturn V booster. Jim Lovell had joined the astronaut program during Project Gemini and had flown on the Gemini VII and XII missions. Lovell:

On the morning Apollo 8 was launched, December 21, the doubts and the acrimony were at least outwardly forgotten. Borman, Lovell, and Anders were sealed in their spacecraft just after 5:00 am in preparation for a 7:51 launch. By 7:00 the networks’ coverage began and much of the country was awake to witness the event live. Across Europe and in Asia, audiences numbering in the tens of millions also tuned in.

From the moment the Brobdignagian Saturn 5 booster was lit it was clear to TV viewers that this would be like no other launch in history. To the men in the spacecraft – one of whom had never flown in space before and two of whom had ridden only the comparatively puny, 109-foot Gemini-Titan – it was clearer still. The Titan had been designed originally as an intercontinental ballistic missile, and if you were unfortunate enough to find yourself strapped in its nose cone – where nothing but a thermonuclear warhead was supposed to be – it felt every bit the ferocious projectile it was. The lightweight rocket fairly leapt off the pad building up velocity and G forces with staggering speed. At the burnout of the second of its two stages, the Titan pulled a crushing eight G’s, causing the average 170 pound astronaut to feel as if he suddenly weighed 1,360 pounds. Just as unsettling as the rocket’s speed and G’s was its orientation. The Titan’s guidance system preferred to do its navigation when the payload and missile were lying on their sides; as the rocket climbed, therefore, it also rolled 90 degrees to the right, causing the horizon outside the astronauts’ windows to change to a vertigo-inducing vertical. Even more disturbing, the Titan had a huge range of ballistic trajectories programmed into its guidance computer, which aimed the missile below the horizon if it was headed for a military target or above the horizon if it was headed for space. As the rocket rose, the computer would continually hunt for the right orientation, causing the missile to wiggle its nose up and down and left to right, bloodhound-fashion, for a target that might be Moscow, might be Minsk or might be low Earth orbit, depending upon whether it was carrying warheads or spacemen on that particular mission.

The Saturn 5 was said to be a different beast. Despite the fact that the rocket produced a staggering 7.5 million pounds of thrust – nearly nineteen times more than the Titan – the designers promised that this would be a far smoother booster. Peak gravity loads were said to climb no higher than four G’s, and at some points in the rocket’s powered flight, its gentle acceleration and its unusual trajectory dropped the gravity load slightly below one G. Among the astronauts, many of whom were approaching forty, the Saturn 5 had already earned the sobriquet “the old man’s rocket.” The promised smoothness of the Saturn’s ride, however, was until now just a promise, since no crew had as yet ridden it to space. Within the first minutes of the Apollo 8 mission, Borman, Lovell, and Andres quickly learned that the rumors about the painless rocket were all wonderfully true.

“The first stage was very smooth, and this one is smoother!” Borman exulted midway through the ascent, when the rocket’s giant F-1 engines had burned out and its smaller J-2 engines had taken over.

“Roger, smooth and smoother,” Capcom answered.

Less than ten minutes later, the gentle expendable booster completed its useful life, dropping its first two stages in the ocean and placing the astronauts in a stable orbit 102 miles above the Earth.

According to the mission rules for a lunar flight, a ship bound for the moon must spend its first three hours in space circling the Earth in an aptly named “parking orbit.” The crew uses this time to stow equipment, calibrate instruments, take navigational readings, and generally make sure their little ship is fit to leave home. Only when everything checks out are they permitted to relight the Saturn 5’s third stage engine and break the gravitational hold of Earth.

For Frank Borman, Jim Lovell, and Bill Anders, it would be a busy three hours, and as soon as the ship was safely in orbit they knew they’d have to get straight to work. Lovell was the first of the trio to unbuckle his seat restraints, and no sooner had he removed the belts and drifted forward than he was struck by a profound feeling of nausea. The astronauts who flew in the early days of the space program had long been warned about the possibility of space sickness in zero G, but in the tiny Mercury and Gemini capsules, where there was barely room to float up from your seat before bonking your head on the hatch, motion-related queasiness was was not a problem. In Apollo there was more space to move around, and Lovell discovered that this elbow room came at a gastric price.

“Whoa,” Lovell said, as much to himself as in warning to his crewmates. “You don’t want to move too fast.”

He eased his way gently forward, discovering – as centuries of remorseful drinkers with late-night bed spins had learned – that if he kept his eyes focused on one spot and moved very, very slowly, he could keep his churning innards under control. Easing his way about in this tentative way, Lovell began to negotiate the space directly around his seat, failing to notice that a small metal toggle protruding from the front of his spacesuit had snagged one of the metal struts of the couch. As he moved forward the toggle caught, and a loud pop and hiss echoed through the spacecraft. The astronaut looked down and noticed that his bright yellow life vest, worn as a precaution during liftoffs over water, was ballooning up to full size across his chest.

“Aw, hell,” Lovell muttered, dropping his head into his hand and pushing himself back into his seat.

“What happened?” a startled Anders asked, looking over from the right-hand couch.

“What does it look like,” Lovell said, more annoyed with himself than his junior pilot. “I think I snagged my vest on something.”

“Well, unsnag it,” Borman said. “We’ve got to get that thing deflated and stowed.”

“I know,” Lovell said, “but how?”

Borman realized Lovell had a point. The emergency life vests were inflated from little canisters of pressurized carbon dioxide that emptied their contents into the bladder of the vest. Since the canisters could not be refilled, deflating the vest required opening its exhaust valve and dumping CO2 into the surrounding air. Out in the ocean this was not a problem, of course, but in a cramped Apollo command module it could be a bit dicey. The cockpit was equipped with cartridges of granular lithium hydroxide that filtered CO2 out of the air, but the cartridges had a saturation point after which they could absorb no more. While there were replacement cartridges on board, it was hardly a good idea to challenge the first cartridge on the first day with a hot belch of carbon dioxide let loose in the small cabin. Borman and Anders looked at Lovell, and the three men shrugged helplessly.

“Apollo 8, Houston. Do you read?” the Capcom called, evidently concerned that he hadn’t heard from the crew for a long minute.

“Roger,” Borman answered. “We had a little incident here. Jim inadvertently popped one life vest, so we’ve got one full Mae West with us.”

“Roger,” the Capcom replied, seemingly without an answer to offer. “Understand.”

With their 180 minutes of Earth orbit ticking away and no time to waste on the trivial matter of a life vest, Lovell and Borman suddenly hit on an answer: the urine dump. In a storage area near the foot of the couches was a long hose connected to a tiny valve leading to the outside of the spacecraft. At the loose end of the hose was a cylindrical assembly. The entire apparatus was known in flying circles as a relief tube. An astronaut in need of the relief the system provided could position the cylinder just so, open the valve to the vacuum outside, and from the comfort of a multi-million-dollar spacecraft speeding along at up to 25,000 miles per hour, urinate into the celestial void.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату