couch for the trans-Earth injection burn. Our SPS engine simply had to work, or we’d be stranded. The burn would consume five tons of propellant in two and a half minutes, increasing our speed by 2,000 miles per hour, enough to break the bonds of the moon’s gravity.
We waited, all three of us watching the DSKY. “Three, two, one,” Mike said, almost whispering.
Ignition was right on the mark. I sank slowly into my couch. NASA’s bold gamble with Lunar Orbit Rendezvous had paid off. Twenty minutes after the burn we rounded the moon’s right-hand limb for the final time.
“Hello. Apollo 11, Houston,” Charlie Duke called from Earth. “How did it go?”
Neil was smiling. “Tell them to open up the LRL doors, Charlie,” he said, referring to our quarantine in the Lunar Receiving Laboratory.
“Roger,” Charlie answered. “We got you coming home.”
The moon’s horizon tilted past my window. Earth hung in the dark universe, warm and welcoming.
Apollo 12 is struck by lightning
Chris Kraft, the Director of Flight Operations said, “Launch has always been an uneasy time for me, and I have always looked forward to a successful separation from the booster. When one adds to this an apprehension caused by bad weather over the Cape, I become even more concerned.”
President and Mrs Nixon were among the large crowd waiting to see the launch, the only time an American President in office witnessed an Apollo launch. As if to prepare this crew of navy aviators for the Ocean of Storms, the launch area was blanketed by rain when Apollo 12 launched into the overcast stratocumulus cloud with a ceiling of only 640 metres above the ground. Rising from Pad 39A at 11.22 am EST in defiance of Mission Rule 1– 404, which said no vehicle shall be launched in a thunderstorm, the huge Saturn V vanished into the murk. Observers then saw two bright blue streaks of lightning – right where the rocket had been. Pete Conrad showed why top test pilots are different from the rest of us when 36seconds after liftoff, at a height of 1,859 metres, they were hit by lightning. At 52 seconds they were hit again. The control panel indicators went haywire and the attitude ball began pitching. If the vehicle really was beginning to fly erratically there were only seconds before it would break up and explode.
The abort handle was waiting at Conrad’s elbow, but he calmly announced to the ground controllers, “Okay, we just lost the platform, gang. I don’t know what happened here. We had everything in the world drop out… fuel cell, lights, and AC Bus overload, one and two, main bus A and B out. Where are we going?”
With the master alarm ringing in his ears, Alan Bean thought he knew all the spacecraft’s electrical faults, but looking along the panel of glowing warning lights he couldn’t recognise any of them – he had never seen so many lights before.
Conrad remembers, “I had a pretty good idea what had happened. I had the only window at the time – the booster protector covered the other windows – and I saw a little glow outside and a crackle in the headphones and, of course, the master caution and warning alarms came on immediately and I glanced up at the panel and in all the simulations they had ever done they had figured out how to light all eleven electrical warning lights at once – by Golly, they were all lit, so I knew right away that this was for real.
“Our high bit rate telemetry had fallen off the line so on the ground they weren’t reading us very well on what was happening, so they got us to switch to the backup telemetry system. The ground then got a look at us and they could see that a bunch of things had fallen off the line, but there weren’t any shorts or anything bad on the systems so we elected to do nothing until we got through staging. When we got through staging then we went about putting things back on line.”
Down among the consoles in the Mission Control Center the steady flow of glowing figures from the spacecraft filing past on the screens were suddenly replaced by a meaningless jumble of characters. All the telemetry signals had dropped out!
John Aaron was the EECOM, the Flight Controller in charge of the Command and Service Module electrical system, and he recalled, “You must remember we did not have a live television view of the launch. I was just looking at control screens which only had data and curves on them. The first thing I realised was we had a major electrical anomaly. But I did recognise a pattern. When we trained for this condition with our simulators it would always read zeros. It so happened that a year before I was monitoring an entry sequence test from the Kennedy Space Center, and the technicians inadvertently got the whole spacecraft being powered by only one battery. I remembered the random pattern that generated on the telemetry system, and for some reason just filed it off to the back of my mind. I did go in the office the next day to reconstruct what happened and found this obscure SCE [Signal Condition Equipment] switch. Few people knew it was there, or what it was for. It was lucky I was the EECOM monitoring the test that night and when it turned out that we had the problem, I happened to be the EECOM on the console. I don’t think any other EECOM would have recognised that random pattern. Our simulators did not train us for it, but I saw it through the procedural screwup. Although the test happened a year before, that pattern was etched in my mind, and I am talking about a pattern of thirty or forty parameters. Instead of reading zeros, one would read six point something, another read eight point something, which were nonsense numbers for a 28 volt power system.”
Aaron quickly called Capcom Jerry Carr on the voice loop to tell the spacecraft, “Flight, try SCE to Aux.” In the spacecraft Bean heard Carr’s instruction, found the Signal Condition Equipment switch, reached across to flip it down to “Auxiliary” which selected an alternate power supply, and order was restored to the television screens.
Aaron recounts, “We now got back live telemetry that was representative of the actual readouts on the spacecraft. We then realised that the fuel cells, the main power source, had been kicked off the line, all three of them, and the whole spacecraft was now being powered by the emergency re-entry batteries in the Command Module, which worked on a lower voltage. They were never designed to carry the full load of the Command and Service Module in a launch configuration. The next call I made was to reset the fuel cells and the voltage was returned to normal.
“I felt quite relieved just to get those guys into low Earth orbit, but I will never forget what Chris Kraft said to me that day, he said, ‘Young man, don’t feel like we have to go to the Moon today, but on the other hand if you and the other systems people here can quickly check this vehicle out and you feel comfortable with how to do that then we’re okay to go, but don’t feel you have to be pressured to go to the Moon today after what happened. We don’t have to go to the Moon today.’
“We then dreamed up a way to do a full vehicle system checkout by improvising and cutting and pasting some of the crew procedures that they already had.”
Nothing serious seemed to have happened, so while still hurtling ever faster up into space, the crew had restored all the systems except the inertial guidance system, and that was set by the 32 minute mark as they shot into the darkness over Africa.
There was some concern that the lightning may have damaged the parachute system in the nose of the Command Module or affected some of the Lunar Module systems at launch, particularly the highly sensitive diodes of the landing radar. With all systems apparently working normally Intrepid homed in to a pinpoint landing on the target, Snowman Crater and the Surveyor III spacecraft, 2,029 kilometres west of the Apollo 11 landing site.
As a panorama of the landing area spread in the window before him, all Conrad could see was a jumbled mass of similar shadows and craters. How could they possibly pick out a particular crater in the time available? Remembering the trouble the experts had locating the Apollo 11 landing point, Conrad felt apprehensive about finding a speck, the Surveyor spacecraft and its particular crater, buried among these thousands of lookalikes.
However their navigation was so accurate the automatic controls were taking them straight to the target