позволяет, в зависимости от задачи, вести наблюдения в первичном фокусе главного зеркала или по оптической схеме Ньютона, Кассегрена, Несмита или куде (от фр. coude — изгиб). Каждая из них имеет свои преимущества. В первичном (главном) фокусе минимальны потери света, но неудобно работать, так как он находится на вершине телескопа, да и громоздкую аппаратуру там расположить нельзя. В фокусе Кассегрена больше масштаб изображения и удобнее работать (он внизу). Фокус Несмита, выведенный в ось склонений, и особенно фокус куде, выведенный в полярную ось, позволяют использовать тяжелую светоприемную аппаратуру, например спектрографы высокого разрешения.

Рис. 3.18. 200–дюймовый рефлектор «Хейл» обсерватории Маунт-Паломар: внешний вид и внутреннее устройство телескопа и его башни. Рисунки Р. У. Портера, выполненные по рабочим чертежам в 1939 г.

XX век стал эпохой триумфа больших рефлекторов. В первой половине века ими располагала обсерватория Маунт — Вилсон, созданная вблизи Лос — Анджелеса по инициативе Джорджа Эллери Хейла (1868-1938), блестящего астронома и организатора науки. Именно он в начале своей карьеры стимулировал создание 40–дюймового рефрактора и сам с 1895 по 1905 гг. возглавлял Йерксскую обсерваторию. Убедившись в ограниченных возможностях равнинных обсерваторий и рефракторов, Хейл с помощью Фонда Карнеги основал горную обсерваторию Маунт — Вилсон на юге штата Калифорния, на высоте 1742 м. Для изучения Солнца на ней были созданы крупнейшие в мире ба шенные телескопы, а первым «ночным» инструментом стал 60–дюймовый (1,5 м) рефлектор «Хейл», названный так в честь отца астронома, Уильяма Хейла, финансировавшего изготовление зеркала. Этот телескоп с 1908 по 1917 гг. держал мировое первенство и прославился выполненными на нем важными работами в области звездной спектроскопии и изучения галактик. Ныне этот инструмент завершил свою работу для науки и стал доступным для публики (в июне 2009 г. за полночи наблюдений на нем нужно было заплатить 900 долларов).

Рис. 3.19. Вид 200–дюймового телескопа «Хейл» с юго — востока. Рис. 3.20. Рабочее место астронома (на фото Эдвин Хаббл) в «стакане» главного фокуса Паломарского телескопа. Внизу видно 5–метровое «око» телескопа.

В 1917 г. на обсерватории Маунт — Вилсон начал работать 100–дюймовый (2,5 м) рефлектор «Хукер», остававшийся крупнейшим в мире до 1948 г. Его зеркало, оплаченное американским меценатом Дж. Хукером, отлили во Франции, а полировал его с 1910 по 1915 гг. знаменитый американский оптик и конструктор телескопов Джордж Ричи (1864–1945). Труба телескопа была укреплена во вращающейся прямоугольной раме, игравшей роль полярной оси. Имеющая две опоры — на северном и южном концах, такая монтировка (ее называют английской) обладает высокой прочностью, но не позволяет наблюдать звезды вблизи полюса. Этот телескоп знаменит тем, что на нем впервые был измерен размер некоторых звезд (А. Майкельсон и Ф. Пиз, 1920–1923 гг.) и с его помощью Э. Хаббл осуществил большинство своих исследований в «царстве туманностей». В 1985 г. работа на телескопе была прекращена, но его решили сохранить как реликвию. Однако в 1992 г. он был модернизирован и вновь стал использоваться.

В 1948 г. с помощью Рокфеллеровского фонда был создан и до 1975 г. оставался крупнейшим в мире 200–дюймовый (5 м) рефлектор «Хейл» на обсерватории Маунт — Паломар в Калифорнии. На этот раз телескоп был назван именем сына — астронома, Джорджа Эллери Хейла, организовавшего его строительство. Полярная ось телескопа тоже выполнена в виде рамы, но ее северная сторона сделана в форме подковы, что позволяет наблюдать околополярные звезды. Плавное вращение 540–тонного телескопа обеспечивается тем, что подковообразная опора «плавает» на тонком слое масла, нагнетаемом под давлением 20 атмосфер. На верхнем конце ферменной трубы телескопа находится небольшая кабина, в которой астроном ведет наблюдения в фокусе главного зеркала, на расстоянии 17 м от него. С помощью сменных вторичных зеркал телескоп может работать в системах Кассегрена или куде с эквивалентными фокусными расстояниями соответственно 81 или 152 м.

С 1975 по 1991 гг. крупнейшим был 6–метровый рефлектор БТА (Большой телескоп альт — азимутальный) Российской академии наук, установленный в Специальной астрофизической обсерватории (САО) близ станицы Зеленчукская на Северном Кавказе, на высоте 2170 м. Фокусное расстояние главного зеркала этого телескопа 24 м, масса главного зеркала — 42 т, а весь телескоп весит 850 т. Этот колоссальный инструмент был спроектирован Б. К. Иоаннисиани и построен в Ленинграде на фирме ЛОМО. Телескоп БТА завершил эволюцию классических рефлекторов с жесткими монолитными зеркалами. Требование жесткости при диаметре более 6 м делает их безнадежно тяжелыми. Уже создатели телескопа БТА в борьбе с весом были вынуждены искать нетрадиционные решения. БТА стал первым современным телескопом, установленным на альт — азимутальной монтировке, имеющей вертикальную и горизонтальную оси вращения. Это существенно упростило конструкцию телескопа (рис. 3.21) и уменьшило размер его башни, хотя для компенсации суточного вращения Земли приходится вращать инструмент вокруг двух осей с переменной скоростью. Теперь по такой схеме строят все крупные телескопы.

Нужно заметить, что зеркала телескопов давно уже не покрывают серебром. В 1930–е гг. Р. Уильямс, Дж. Стронг и Ч. Картрайт разработали технику алюминирования зеркал. Их помещают в вакуумную камеру, где под действием электрического тока испаряются алюминиевые проволочки, и тонкая алюминиевая пленка покрывает поверхность зеркала, сообщая ей лучшие отражающие свойства, чем это делало серебро. На воздухе отражающая поверхность тотчас же покрывается прозрачной пленкой окиси алюминия толщиной всего в один атом, которая не дает зеркальному слою тускнеть. Но все же раз в несколько лет зеркало приходится алюминировать заново, поэтому рядом с каждым крупным телескопом есть вакуумная камера соответствующего диаметра.

Рис. 3.21. 238–дюймовый телескоп БТА Специальной астрофизической обсерватории РАН. На боковые площадки его монтировки выведены фокусы Несмита.

Мы еще вернемся к современным большим телескопам, а сейчас обсудим специализированные инструменты среднего калибра, играющие очень важную роль в исследовании Солнечной системы. Одна из проблем ее изучения заключается в том, что мы находимся внутри нее. Поэтому, чтобы искать новые объекты Солнечной системы и изучать уже открытые, астрономы должны наблюдать все небо, во всех направлениях. К сожалению, с помощью обычного рефлектора можно сфотографировать лишь маленькую область на небе. Основная причина в том, что эти телескопы страдают двумя аберрациями — комой и астигматизмом, которые сильно искажают изображения звезд при удалении от оптической оси телескопа. Например, в главном фокусе 5–метрового Паломарского рефлектора поле с хорошим изображением имеет размер почтовой марки и покрывает на небе площадку с угловым размером 2,5'х2,5'. Разместив перед фотопластинкой специальный линзовый корректор, можно частично исправить искажения на краях, увеличив размер хорошего поля зрения в 10–15 раз. Но и при этом классический рефлектор имеет небольшое поле зрения, едва достигающее углового размера Луны. С таким телескопом невозможно проводить поисковые или патрульные работы, когда за короткое время требуется сфотографировать значительную часть неба.

Широкоугольный телескоп был создан в 1932 г. эстонским оптиком Бернхардом Шмидтом (1879–1935) на Гамбургской обсерватории. Он использовал сферическое главное зеркало, поставив перед ним для исправления сферической аберрации тонкую линзу сложной формы, так называемую коррекционную пластину. Она очень трудна в изготовлении и, будучи размещена в центре кривизны, на удвоенном фокусном расстоянии от зеркала, делает трубу инструмента довольно длинной. Но преимущества этой системы так велики, что в мире уже создано немало подобных телескопов; их называют камерами Шмидта, поскольку используют только для фотографирования неба. Крупнейшая изготовлена фирмой «Карл Цейсс» и находится в обсерватории им. К. Шварцшильда близ Йены (Германия). Построенная в 1960 г., она имеет сферическое зеркало диаметром 200 см с фокусным расстояние 400 см и коррекционную пластину

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату