нас сугубо отрицательное, космическая пыль очень интересует астрономов и служит объектом пристального исследования. Без сомнения, очень велика ее роль в рождении звезд и планет, поскольку пылинки — главные охладители межзвездной среды, способствующие ее сжатию и конденсации. Не менее важна роль пылинок как катализаторов химических реакций в межзвездном и межпланетном пространстве. Не исключено, что первые шаги в эволюции живого вещества тоже были сделаны благодаря космической пыли. Но эту интересную тему мы оставим для другого рассказа, а раз уж отправились на разведку планет, то ими и ограничимся.
Эта глава посвящена маленьким планетам Солнечной системы, не входящим в «большую восьмерку», но все же имеющим некоторые признаки настоящих планет. Давайте вспомним определение планеты: это объект, обращающийся вокруг Солнца и достаточно массивный для того, чтобы придать себе сфероидальную форму, к тому же не имеющий рядом со своей орбитой тел сравнимой с ним массы. Что касается отсутствия близких массивных соседей, то это требование, разумеется, важно для правильного представления о происхождении и эволюции планеты, но прямо не связано с условиями на ее поверхности и в ее недрах. Если масса космического тела настолько велика, что собственная сила тяжести придала ему сфероидальную форму, то это означает, что в его недрах протекает геологическая эволюция. В результате вещество разделяется по плотности (легкое вверх, тяжелое вниз), выделяется тепло, идут химические реакции и т. п. А если у этого тела к тому же есть атмосфера и, может быть, даже небольшие спутники, то любой планетолог будет изучать его как полноценную планету. Высадившись на поверхности такого тела, мы ощутим себя на планете, независимо от того, как называется этот объект в астрономических справочниках.
Как отличить планету от прочих небесных светил?
При взгляде на ночное небо все светила, кроме Луны, сначала кажутся нам одинаковыми «звездочками», различающимися только своим блеском. Но, присмотревшись, мы замечаем, что подавляющее большинство звезд дрожит, мигает, переливается, то есть испытывает хаотические флуктуации блеска. Астрономы называют это мерцанием. Мерцает абсолютное большинство звезд, но не все: некоторые светят стабильно. Почему они «отбились от коллектива»? С помощью звездной карты и Астрономического календаря, а еще проще — с помощью компьютерного планетария быстро выясняется, что немигающие «звезды» — это в действительности планеты. Стабильность блеска планет давно уже стала народным способом их поиска на небе: обычно именно так отличают планеты от ярких звезд.
Как известно, звезды мерцают потому, что их свет проходит через неспокойные слои атмосферы. Теплые потоки воздуха поднимаются вверх, охлажденные стремятся вниз, они смешиваются друг другом, дробятся на ячейки с разной температурой и оптической плотностью. На границах этих ячеек происходит преломление света. В общем, такой процесс легко смоделировать, направив в стакан с кипятком струйку холодной воды либо наоборот. Попробуйте сами: поставьте стакан холодной воды на газету, плесните в него кипяток — и увидите, как будет выглядеть газетный текст сквозь воду, пока она полностью не перемешается. Глядя сквозь оптически неоднородную бурлящую атмосферу на далекие источники света (не только космические!), мы замечаем их мерцание в том диапазоне частот, который доступен нашему зрению, то есть не выше 20 Гц. Высокочастотные мерцания мы (в отличие, скажем, от стрекоз) не различаем, хотя они тоже присутствуют.
Оставим пока в стороне явление дифракции света на зрачке глаза, а также зернистость сетчатки, которые даже при отсутствии атмосферы не позволили бы нам различить реальный диск звезды или воспринять далекую звезду как точку исчезающе малого углового размера. Оба эти явления — дифракция и «пиксельная» структура сетчатки — размывают изображение звезды, но сами по себе в силу своей статичности не вызывают колебаний яркости и цвета. Однако и в том случае, если бы острота нашего зрения была фантастически высокой, мы, наблюдая сквозь атмосферу, не смогли бы различить реальные диски звезд. Дело в том, что за время одного «кадра», воспринимаемого нашим зрением (около 0,05 с), быстрое атмосферное дрожащее почти точечного изображения звезды создает вместо него «кляксу», угловой размер которой зависит от состояния атмосферы в месте наблюдения и обычно составляет от 2' до 5'. Впрочем, наш глаз не различает столь малых углов. Дифракция на зрачке и неоднородность сетчатки снижают угловое разрешение нашего ночного зрения до 2–3 минут дуги, то есть примерно до 150'. Так что звезду — «кляксу» размером 2–5' наш глаз воспринимает как точку, но низкочастотные колебания ее яркости глаз замечает. Они-т? и служат причиной мерцания звезд.
Все это понятно, но почему же все-таки звезды мерцают, а планеты — нет, почему при наблюдении ночного неба невооруженным глазом изображение звезды дрожит, а планета выглядит более стабильной, почти неизменной? Разумеется, преломление света в атмосфере не зависит от того, каков его источник: звезда или планета.
Рис. 7.2. Конфигурации планет, то есть их характерные положения относительно Земли и Солнца. По отношению к земному наблюдателю планета на внешней орбите может располагаться в соединении или противостоянии с Солнцем, а также в восточной или западной квадратурах. Планета на внутренней орбите может располагаться в нижнем (1) или верхнем (3) соединениях, а также в наибольшей восточной (4) или западной (2) элонгациях.
Угловой диаметр планет, доступных по своему блеску для наблюдения невооруженным глазом
Планета | Угловой диаметр,' |
Меркурий | 5-13 |
Венера | 10-66 |
Марс | 4-25 |
Юпитер |