образом, срок окупаемости зависит от неизвестного дисконт—фактора С или даже от неизвестной дисконт—функции – ибо какие у нас основания считать будущую дисконт—функцию постоянной? Иногда (в том числе в официальных изданиях) рекомендуется использовать норму дисконта (дисконт—фактор), соответствующую ПРИЕМЛЕМОЙ для инвестора норме дохода на капитал. Мы не знаем заранее, какую норму дисконта тот или иной инвестор сочтет приемлемой. Однако ясно, что она зависит от ситуации в экономике в целом. То, что представляется выгодным сегодня, может оказаться невыгодным завтра, или наоборот. Тем самым решение перекладывается на инвестора, который фактически выступает в роли эксперта по выбору нормы дисконта.

Коэффициент эффективности инвестиций. Этот критерий имеет две характерные черты: во—первых, он не предполагает дисконтирования показателей дохода; во—вторых, доход характеризуется показателем чистой прибыли PN (прибыль за минусом отчислений в бюджет). Алгоритм расчета исключительно прост, что и предопределяет широкое использование этого показателя на практике. Коэффициент эффективности инвестиции, называемый также учетной нормой прибыли (A RR), рассчитывается делением среднегодовой прибыли PN на среднюю величину инвестиций (коэффициент берется в процентах). Средняя величина инвестиций находится делением исходной суммы капитальных вложений на два, если предполагается, что по истечении срока реализации анализируемого проекта все капитальные затраты будут списаны. Если допускается наличие остаточной или ликвидационной стоимости (R V), то ее оценка должна быть учтена в расчетах. Иными словами, существуют различные алгоритмы исчисления показателя A RR. Достаточно распространенным является следующий:

Данный показатель чаще всего сравнивается с коэффициентом рентабельности авансированного капитала, рассчитываемого делением общей чистой прибыли организации на общую сумму средств, авансированных в ее деятельность (итог среднего баланса— нетто).

Метод, основанный на коэффициенте эффективности инвестиции, также имеет ряд существенных недостатков, обусловленных в основном тем, что он не учитывает временной компоненты денежных потоков. В частности, метод не делает различия между проектами с одинаковой суммой среднегодовой прибыли, но варьирующей суммой прибыли по годам, а также между проектами, имеющими одинаковую среднегодовую прибыль, но генерируемую в течение различного количества лет, и т. п.

Критерии (показатели, характеристики финансовых потоков) используются для оценки и сравнения инвестиционных проектов, выбора из них наиболее предпочтительных для инвестора. Поскольку рассмотренные показатели (критерии, характеристики финансовых потоков) относятся к различным моментам времени, ключевой проблемой здесь является их сопоставимость между собой. Относиться к результатам сопоставления тех или иных критериев можно по—разному в зависимости от существующих объективных и субъективных условий: темпа инфляции, размера инвестиций и генерируемых поступлений, горизонта прогнозирования, уровня квалификации аналитика и т. п.

2.3.4. Оценки погрешностей характеристик финансовых потоков и проблема горизонта планирования

Погрешности экономических измерений. Все знают, что любое инженерное измерение проводится с некоторой погрешностью. Эту погрешность обычно приводят в документации (техническом паспорте средства измерения) и учитывают при принятии решений. Ясно, что и любое экономическое измерение также проводится с погрешностью. А вот какова она? Необходимо уметь ее оценивать, поскольку ошибки при принятии экономических решений обходятся дорого.

Например, чистая текущая стоимость, срок окупаемости и сам вывод о прибыльности проекта зависят от неизвестного дисконт—фактора С или даже от неизвестной дисконт—функции – ибо какие у нас основания считать будущую дисконт—функцию постоянной? Экономическая история России последних лет показывает, что банки часто меняют проценты выплат за депозит и за кредит.

Количественная оценка финансовых потоков инвестиционных проектов, в частности, денежных поступлений и платежей, представляет собой сложную задачу, поскольку на каждый из них оказывает влияние множество разнообразных факторов, а сами оценки охватывают достаточно длительный промежуток времени. В частности, для рассматриваемого примера важно учитывать следующие характеристики инвестиционного проекта:

• возможные колебания рыночного спроса на продукцию;

• ожидаемые колебания цен на потребляемые ресурсы и производимую продукцию;

• возможное появление на рынке товаров—конкурентов;

• планируемое снижение производственно—сбытовых издержек по мере освоения новой продукции и наращивания объемов производства;

• влияние инфляции на покупательную способность потребителей и, соответственно, на объемы продаж.

Поэтому такие оценки базируются на прогнозах внутренней и внешней среды предприятия. Использование прогнозных оценок всегда связано с риском, возрастающим при увеличении масштаба проекта и длительности инвестиционного периода.

Оценка финансовых потоков инвестиционных проектов связана также с анализом источников финансирования. Причем для целей проводимого анализа особое внимание уделяется внешним источникам, в частности, акционерному капиталу и планируемым затратам по обслуживанию привлеченного капитала: размерам дивидендов, периодичности их выплат и т. п.

Оценка погрешности NPV. В качестве примера рассмотрим исследование чистой текущей стоимости NPV на устойчивость (чувствительность) к малым отклонениям значений дисконт —функции. Для этого надо найти максимально возможное отклонение NPV при допустимых отклонениях значений дисконт—функции (или, если угодно, значений банковских процентов). В качестве примера рассмотрим инвестиционный проект, описываемый финансовым потоком из четырех элементов:

NPV = NPV ( a (0) , a( 1 ), С ( 1 ), a (2), С (2), a (3), С (3))=

= a (0) + a( 1 (1) + a(2)С( 2 ) + a (3) С (3).

Предположим, что изучается устойчивость (чувствительность) для ранее рассмотренных значений

a (0)=-10, a (1)=3, a(2)=4, a(3)=5, С (1)=0,89, С (2)=0,80, С (3)=0,71.

Пусть максимально возможные отклонения С (1), С (2), С (3) равны + 0,05. Тогда максимум значений NPV равен

NPV max = -10+3×0,94+4×0.85+5×0,76 = - 10+2,82+3,40+3,80 = 0,02,

в то время как минимум значений NPV есть

NPV min = - 10+3×0,84+4×0.75+5×0,66 = -10 +2,52 +3,00+3,30 = -1,18.

Для NPV получаем интервал от (-1,18) до (+0,02). Его длина достаточно велика. В нем есть и положительные, и отрицательные значения. Так что не удается сделать однозначного заключения – будет проект убыточным или выгодным. Для принятия решения не обойтись без экспертов.

Есть много подходов к изучению чувствительности экономических величин и основанных на них выводах. Обратите, например, внимание на то, что величины a (0), a (1), a (2), a (3) в только что рассмотренном примере изучения чувствительности считались постоянными. А ведь это – упрощение ситуации, трудно предсказать на три года вперед возможность выполнения обязательств.

Что с точки зрения экономической теории означает приравнивание дисконт—функции константе? В главе 1.4 показано, что необходимым и достаточным условием, выделяющим модели с постоянным дисконтированием среди всех моделей динамического программирования, является устойчивость результатов сравнения планов на 1 и 2 шага. Другими словами, модели с постоянным дисконтированием игнорируют изменение предпочтений людей, научно—технический прогресс, вообще любые изменения в экономике, вызванные СТЭЭП—факторами, а потому не могут быть полностью адекватны реальности.

Чистая текущая стоимость, очевидно, зависит от общего объема платежей. Как правило, чем проект крупнее, тем эта характеристика проекта больше по абсолютной величине (например, изменения ставок налога в масштабе страны приносит больший эффект, чем в масштабах региона). При этом при одних значениях нормы дисконта она может быть положительной, а при других – отрицательной. Крайние значения С = 0 (банковский процент крайне высок) и С =1 (он крайне низок) могут дать эти две

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату