программирования только последним условием целочисленности. Однако наличие этого условия позволяет (в данном конкретном случае) легко решить задачу перебором. Действительно, как ограничение по стоимости, так и ограничение по площади дают, что
Если
Если
Если
Если
Если
Все возможные случаи рассмотрены. Максимальная производительность
Задача о ранце . Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.
Есть много эквивалентных формулировок. Например, можно вместо ранца рассматривать космический аппарат – спутник Земли, а в качестве предметов – научные приборы. Тогда задача интерпретируется как отбор приборов для запуска на орбиту. Правда, при этом предполагается решенной предварительная задача – оценка сравнительной ценности исследований, для которых нужны те или иные приборы.
С точки зрения экономики предприятия и организации производства более актуальна другая интерпретация задачи о ранце, в которой в качестве «предметов» рассматриваются заказы (или варианты выпуска партий тех или иных товаров), в качестве полезности – прибыль от выполнения того или иного заказа, а в качестве веса – себестоимость заказа.
Перейдем к математической постановке. Предполагается, что имеется n предметов, и для каждого из них необходимо решить, класть его в ранец или не класть. Для описания решения вводятся булевы переменные
В отличие от предыдущих задач, управляющие параметры
К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т. д.
Укажем два распространенных метода решения задач целочисленного программирования
Метод приближения непрерывными задачами. В соответствии с ним сначала решается задача линейного программирования без учета целочисленности, а затем в окрестности оптимального решения ищутся целочисленные точки.
Методы направленного перебора . Из них наиболее известен метод ветвей и границ. Суть метода такова. Каждому подмножеству
Каждый шаг метода ветвей и границ состоит в делении выбранного на предыдущем шаге множества Х С на два –
Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по—своему. Есть много модификаций этого метода. Однако менеджеру нет необходимости вникать в подробности, относящиеся к вычислительной математике. Вместе с тем он должен знать о возможностях, предоставляемых ему теорией оптимизации.
3.2.3. Теория графов и оптимизация
Один из разделов дискретной математики, часто используемый при принятии решений – теория графов. Граф – совокупность точек, называемых вершинами графа, некоторые из которых соединены дугами (дуги называют также ребрами). На только что введенное понятие графа «навешиваются» новые свойства. Исходному объекту приписывают новые качества. Например, вводится и используется понятие ориентированного графа. В таком графе дуги имеют стрелки, направленные от одной вершины к другой.
Ориентированный граф был бы полезен, например, для иллюстрации организации перевозок в транспортной задаче. В экономике дугам ориентированного или обычного графа часто приписывают числа, например, стоимость проезда или перевозки груза из пункта А (начальная вершина дуги) в пункт Б (конечная вершина дуги).
Рассмотрим несколько типичных задач принятия решений, связанных с оптимизацией на графах.
Задача коммивояжера . Требуется посетить все вершины графа и вернуться в исходную вершину, минимизировав затраты на проезд (или минимизировав время).
Исходные данные здесь – это граф, дугам которого приписаны положительные числа – затраты на проезд или время, необходимое для продвижения из одной вершины в другую. В общем случае граф является ориентированным, и каждые две вершины соединяют две дуги – туда и обратно. Действительно, если пункт А расположен на горе, а пункт Б – в низине, то время на проезд из А в Б, очевидно, меньше времени на обратный проезд из Б в А.
Многие постановки экономического содержания сводятся к задаче коммивояжера. Например:
– составить наиболее выгодный маршрут обхода наладчика в цехе (контролера, охранника, милиционера), отвечающего за должное функционирование заданного множества объектов (каждый из этих объектов моделируется вершиной графа);
– составить наиболее выгодный маршрут доставки деталей рабочим или хлеба с хлебозавода по заданному числу булочных и других торговых точек (парковка у