xlink:href='#Autogen_eBook_id121'/>
Однако сумма по восьмому столбцу дает 0,06, а не 0. Незначительное отличие от 0 связано с ошибками округления при вычислениях. Близость суммы значений зависимой переменной и суммы восстановленных значений – практический критерий правильности расчетов.
В последнем девятом столбце табл.1 приведены квадраты значений из восьмого столбца. Их сумма – это остаточная сумма квадратов
Рассмотрим распределения оценок параметров. Оценка
В формулах для дисперсий участвует величина
Подставив численные значения, получаем, что
Дисперсия для оценки
Прогностическая формула с учетом погрешности имеет вид (при доверительной вероятности 0,95)
В этой записи сохранено происхождение различных составляющих. Упростим:
Например, при
Следовательно, нижняя доверительная граница – это 44,095, а верхняя доверительная граница – это 49,325.
Насколько далеко можно прогнозировать? Обычный ответ таков – до тех пор, пока сохраняется тот стабильный комплекс условий, при котором справедлива рассматриваемая зависимость. Изобретатель метода наименьших квадратов Карл Гаусс исходил из задачи восстановления орбиты астероида (малой планеты) Церера. Движение подобных небесных тел может быть рассчитано на сотни лет. А вот параметры комет (например, срок возвращения) не поддаются столь точному расчету, поскольку за время пребывания в окрестности Солнца сильно меняется масса кометы. В социально—экономической области горизонты надежного прогнозирования еще менее определены. В частности, они сильно зависят от решений центральной власти.
Чтобы выявить роль погрешностей в прогностической формуле, рассмотрим формальный предельный переход
Тогда слагаемые 9,03; 1/6; 5,67 становятся бесконечно малыми, и
Таким образом, погрешности составляют около
от тренда (математического ожидания) прогностической функции. В социально—экономических исследованиях подобные погрешности считаются вполне приемлемыми.3.3.3. Основы линейного регрессионного анализа
Метод наименьших квадратов, рассмотренный в простейшем случае, допускает различные обобщения. Например, метод наименьших квадратов дает алгоритм расчетов, если исходные данные – по—прежнему набор
Следует рассмотреть функцию трех переменных
Оценки метода наименьших квадратов – это такие значения параметров
Приравнивая частную производную к 0, получаем линейное уравнение относительно трех неизвестных параметров
Приравнивая частную производную по параметру
Наконец, приравнивая частную производную по параметру
Решая систему трех уравнений с тремя неизвестными, находим оценки метода наименьших квадратов.
Другие задачи, рассмотренные в предыдущем пункте (доверительные границы для параметров и прогностической функции и др.), также могут быть решены. Соответствующие алгоритмы более громоздки. Для их записи полезен аппарат матричной алгебры. Для реальных расчетов используют соответствующие компьютерные программы.
Раздел эконометрики, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится.
Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома)
то коэффициенты многочлена могут быть найдены путем минимизации функции
Функция от
тогда неизвестные параметры могут быть найдены путем минимизации функции
Пусть
Эта модель не является линейной, метод наименьших квадратов непосредственно применять нельзя. Однако если прологарифмировать обе части предыдущего равенства:
то получим линейную зависимость, рассмотренную выше.
Независимых переменных может быть не одна, а несколько. Пусть, например, по исходным данным
требуется оценить неизвестные параметры
где ε – погрешность. Это можно сделать, минимизировав функцию
Зависимость от
тогда для оценки пяти параметров необходимо минимизировать функцию
Более подробно рассмотрим пример из микроэкономики. В одной из оптимизационных моделей поведения фирмы используется т. н. производственная функция
Однако откуда взять значения параметров α и β? Естественно предположить, что они – одни и те же для предприятий отрасли.