(Уильям Оккам, средневековый английский философ). Подход Оккама (или «бритва Оккама») в 20-х годах прошлого века был взят на вооружение Нильсом Бором, Вернером Гейзенбергом, Эрвином Шредингером и Полем Дираком, в результате чего классическая механика уступила место квантовой теории, во главу угла которой был положен принцип неопределенности.

Квантовая механика раз и навсегда перечеркнула детерминизм, на котором покоилась старая физика, и внесла в науку неизбежный элемент непредсказуемости. Бескрылая и плоская однозначность уступила место вероятностному подходу.

Зная исходные параметры системы, мы уже не можем гарантировать вполне определенного результата, а говорим лишь о том, что система будет находиться в том или ином состоянии с некоторой вероятностью. Это было настолько непривычно и удивительно! Даже такой еретик и революционер, как Альберт Эйнштейн, однажды в связи с этим в сердцах заявил, что Бог не играет в кости. Тем не менее большинство ученых сразу же приняли квантовую механику, поскольку она давала прекрасное согласование с экспериментом.

Из принципа неопределенности самым непосредственным образом вытекает так называемый корпускулярно-волновой дуализм. Любая частица может запросто обернуться волной, и наоборот: суть вещей, как ни странно, ускользает от строгих формулировок. Скажем, электромагнитное излучение распространяется в виде фиксированных порций, или квантов, что убедительно продемонстрировал Макс Планк. Однако в соответствии с принципом неопределенности Гейзенберга фотоны (кванты электромагнитного излучения) в то же самое время ведут себя как волны, не имеющие определенного положения в пространстве, но «размазанные» по нему с некоторым распределением вероятности. Свет в данном случае – отнюдь не исключение; точно так же ведут себя все прочие частицы, которые принято называть элементарными.

Физики немного лукавят, когда говорят, что электрон вращается вокруг атомного ядра, потому что в действительности ни о каком движении в привычном понимании этого слова здесь не может быть и речи: электрон не крутится, как заведенный, но находится в некотором определенном состоянии, которое описывается сложной волновой функцией. Иными словами, мы имеем право говорить только лишь о вероятности пребывания электрона в той или иной точке.

Закончим на этом наш короткий экскурс в квантовую механику и перейдем к рассмотрению элементарных частиц как таковых.

Если фотон или электрон, бесспорно, элементарны, то этого никак не скажешь о начинке атомного ядра – протонах и нейтронах, поскольку они имеют сложную внутреннюю структуру. Обе эти частицы представляют собой кварковые триплеты, то есть построены из более фундаментальных кирпичей – кварков, тех самых кварков, за открытие которых Мюррей Гелл-Манн был удостоен Нобелевской премии. Однако обо всем по порядку.

Основными свойствами всех без исключения элементарных частиц являются масса, заряд и спин. Масса частицы составляет часть ее полной энергии, потому что масса – это всего лишь другая ее форма. Масса может быть преобразована в энергию, и наоборот; взаимосвязь между этими двумя сторонами одной медали легко видеть в знаменитой формуле Альберта Эйнштейна E = mc2, где E – энергия, m – масса, а c – скорость света. Одни частицы имеют массу, а другие ее лишены. Например, физики говорят, что масса покоя фотона равняется нулю. Это просто-напросто означает, что покоящихся фотонов в природе не существует. Остается добавить, что распределение частиц по массам не подчиняется никакой внятной закономерности.

Электрический заряд – тоже знакомый зверь. С зарядом дело обстоит в точности так же, как и с массой: одни частицы его несут, а другие – нет. Частицы, не имеющие заряда, считаются электрически нейтральными. В отличие от массы, заряд бывает двух видов – положительный и отрицательный; заряды всех элементарных частиц кратны заряду электрона, за исключением кварков, заряд которых кратен 1/3 заряда электрона.

Спин элементарной частицы представляет собой некий внутренний момент ее вращения и пропорционален постоянной Планка. Если частица не вращается, ее спин равен нулю. Из соображений наглядности можно представить себе частицы в виде маленьких волчков или шариков, вращающихся вокруг своей оси, но всегда следует помнить, что подобная картина сугубо условна и не имеет с реальностью ничего общего. В квантовом мире элементарные частицы не имеют строго определенной оси вращения. Спин частицы дает нам представление о том, как она выглядит, если посмотреть на нее с разных сторон. Стивен Хокинг приводит хороший пример на этот счет.

Частица со спином 0 похожа на точку: она выглядит со всех сторон одинаково. Частицу со спином 1 можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает тот же вид лишь после полного оборота на 360°. Частицу со спином 2 можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется после полуоборота (180°). Аналогичным образом частица с более высоким спином возвращается в первоначальное состояние при повороте на еще меньшую часть полного оборота. Это все довольно очевидно, а удивительно другое – существуют частицы, которые после полного оборота не принимают прежний вид: их нужно дважды полностью повернуть! Говорят, что такие частицы обладают спином 1/2.

Все известные элементарные частицы можно разделить на две группы в зависимости от величины спина, который они несут. Если спин выражается целым числом (0, 1, 2 и т. д.), то такие частицы называют бозонами, а если полу-целым (1/2, 3/2, 5/2 и т. д.), – фермионами. Эти названия образованы от фамилий двух известных физиков-теоретиков Сатиендра Бозе и Энрико Ферми. Все вещество во Вселенной построено из фермионов – частиц с полуцелым спином, а силы, действующие между частицами вещества, создаются бозонами, имеющими целочисленный спин. Спин электрона составляет 1/2, поэтому он попадает в группу фермионов.

В зависимости от их отношения к сильному взаимодействию (о четырех типах фундаментальных взаимодействий речь у нас впереди) фермионы, в свою очередь, подразделяются на два семейства. Те фермионы, которые принимают участие в процессах с сильным взаимодействием, называются кварками (протоны и нейтроны состоят из кварков), а все остальные, в сильных взаимодействиях не участвующие, – лептонами. Электрон входит в семейство лептонов; кроме него там помещаются еще пять частиц – электронное нейтрино, мюон, мюонное нейтрино, тау-нейтрино и тау-лептон. Кварков тоже насчитывается шесть разновидностей – и-кварк, d-кварк, с-кварк, s-кварк, t-кварк и b-кварк. Таким образом, кирпичами мироздания, строительными блоками материи, которую мы повсеместно наблюдаем, являются 12 фундаментальных частиц – 6 кварков и 6 лептонов.

Среди бозонов, являющихся переносчиками фундаментальных взаимодействий и создающих силы, действующие между частицами вещества, наиболее известны фотоны, 8 разновидностей глюонов, 3 вида тяжелых векторных бозонов (W+-бозон, W--бозон и Z-бозон) и пока еще не открытый гравитон.

Остается добавить, что в современной теории поля частицы выступают как мелкомасштабные волны соответствующих полей. Например, электромагнитное излучение может восприниматься и как волна (скажем, в случае радиоволн), и как частица (жесткие гамма-кванты). Если длина волны электромагнитного излучения значительно превышает размеры прибора, то она регистрируется как непрерывная волна, то есть бегущие колебания электрического и магнитного полей. В противном случае (при малой длине волны) прибор фиксирует свет в виде отдельных квантов – фотонов. Тогда говорят уже не о длине волны, а об энергии фотона. Классический пример корпускулярно-волнового дуализма.

Фермионы, из которых построено вещество Вселенной, – отнюдь не безучастные статисты на этом празднике жизни. Они взаимодействуют между собой, а в роли переносчиков взаимодействия (или сил, действующих между частицами вещества) выступают бозоны. Чтобы создать все многообразие явлений, природе потребовалось круглым счетом четыре типа взаимодействий – электромагнитное, слабое, сильное (или ядерное) и гравитационное. Имеются серьезные основания полагать, что первые три типа взаимодействий при некоторых условиях могут объединяться в одну силу, а раздельно они существуют только при низких уровнях энергии. К настоящему времени построена модель электрослабого взаимодействия (электромагнитное + слабое), а частицы-переносчики этой единой силы обнаружены экспериментально (три вида тяжелых векторных бозонов). Теория, объединяющая три силы в одну (электрослабое взаимодействие + сильное), называется теорией великого объединения, однако потребный

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату