breathing bipeds with shopping malls and a fondness for action movies, it is unlikely that they would find Earth ideal. We couldn’t even give them lunch because all our foods contain traces of manganese, selenium, zinc, and other elemental particles at least some of which would be poisonous to them. To them Earth might not seem a wondrously congenial place at all.

The physicist Richard Feynman used to make a joke about a posteriori conclusions, as they are called. “You know, the most amazing thing happened to me tonight,” he would say. “I saw a car with the license plate ARW 357. Can you imagine? Of all the millions of license plates in the state, what was the chance that I would see that particular one tonight? Amazing!” His point, of course, was that it is easy to make any banal situation seem extraordinary if you treat it as fateful.So it is possible that the events and conditions that led to the rise of life on Earth are not quite as extraordinary as we like to think. Still, they were extraordinary enough, and one thing is certain: they will have to do until we find some better.

17 INTO THE TROPOSPHERE

THANK GOODNESS FOR the atmosphere. It keeps us warm. Without it, Earth would be a lifeless ball of ice with an average temperature of minus 60 degrees Fahrenheit. In addition, the atmosphere absorbs or deflects incoming swarms of cosmic rays, charged particles, ultraviolet rays, and the like. Altogether, the gaseous padding of the atmosphere is equivalent to a fifteen-foot thickness of protective concrete, and without it these invisible visitors from space would slice through us like tiny daggers. Even raindrops would pound us senseless if it weren’t for the atmosphere’s slowing drag.

The most striking thing about our atmosphere is that there isn’t very much of it. It extends upward for about 120 miles, which might seem reasonably bounteous when viewed from ground level, but if you shrank the Earth to the size of a standard desktop globe it would only be about the thickness of a couple of coats of varnish.

For scientific convenience, the atmosphere is divided into four unequal layers: troposphere, stratosphere, mesosphere, and ionosphere (now often called the thermosphere). The troposphere is the part that’s dear to us. It alone contains enough warmth and oxygen to allow us to function, though even it swiftly becomes uncongenial to life as you climb up through it. From ground level to its highest point, the troposphere (or “turning sphere”) is about ten miles thick at the equator and no more than six or seven miles high in the temperate latitudes where most of us live. Eighty percent of the atmosphere’s mass, virtually all the water, and thus virtually all the weather are contained within this thin and wispy layer. There really isn’t much between you and oblivion.

Beyond the troposphere is the stratosphere. When you see the top of a storm cloud flattening out into the classic anvil shape, you are looking at the boundary between the troposphere and stratosphere. This invisible ceiling is known as the tropopause and was discovered in 1902 by a Frenchman in a balloon, Leon-Philippe Teisserenc de Bort. Pause in this sense doesn’t mean to stop momentarily but to cease altogether; it’s from the same Greek root as menopause. Even at its greatest extent, the tropopause is not very distant. A fast elevator of the sort used in modern skyscrapers could get you there in about twenty minutes, though you would be well advised not to make the trip. Such a rapid ascent without pressurization would, at the very least, result in severe cerebral and pulmonary edemas, a dangerous excess of fluids in the body’s tissues. When the doors opened at the viewing platform, anyone inside would almost certainly be dead or dying. Even a more measured ascent would be accompanied by a great deal of discomfort. The temperature six miles up can be -70 degrees Fahrenheit, and you would need, or at least very much appreciate, supplementary oxygen.

After you have left the troposphere the temperature soon warms up again, to about 40 degrees Fahrenheit, thanks to the absorptive effects of ozone (something else de Bort discovered on his daring 1902 ascent). It then plunges to as low as -130 degrees Fahrenheit in the mesosphere before skyrocketing to 2,700 degrees Fahrenheit or more in the aptly named but very erratic thermosphere, where temperatures can vary by a thousand degrees from day to night-though it must be said that “temperature” at such a height becomes a somewhat notional concept. Temperature is really just a measure of the activity of molecules. At sea level, air molecules are so thick that one molecule can move only the tiniest distance-about three-millionths of an inch, to be precise-before banging into another. Because trillions of molecules are constantly colliding, a lot of heat gets exchanged. But at the height of the thermosphere, at fifty miles or more, the air is so thin that any two molecules will be miles apart and hardly ever come in contact. So although each molecule is very warm, there are few interactions between them and thus little heat transference. This is good news for satellites and spaceships because if the exchange of heat were more efficient any man-made object orbiting at that level would burst into flame.

Even so, spaceships have to take care in the outer atmosphere, particularly on return trips to Earth, as the space shuttle Columbia demonstrated all too tragically in February 2003. Although the atmosphere is very thin, if a craft comes in at too steep an angle-more than about 6 degrees-or too swiftly it can strike enough molecules to generate drag of an exceedingly combustible nature. Conversely, if an incoming vehicle hit the thermosphere at too shallow an angle, it could well bounce back into space, like a pebble skipped across water.

But you needn’t venture to the edge of the atmosphere to be reminded of what hopelessly ground-hugging beings we are. As anyone who has spent time in a lofty city will know, you don’t have to rise too many thousands of feet from sea level before your body begins to protest. Even experienced mountaineers, with the benefits of fitness, training, and bottled oxygen, quickly become vulnerable at height to confusion, nausea, exhaustion, frostbite, hypothermia, migraine, loss of appetite, and a great many other stumbling dysfunctions. In a hundred emphatic ways the human body reminds its owner that it wasn’t designed to operate so far above sea level.

“Even under the most favorable circumstances,” the climber Peter Habeler has written of conditions atop Everest, “every step at that altitude demands a colossal effort of will. You must force yourself to make every movement, reach for every handhold. You are perpetually threatened by a leaden, deadly fatigue.” In The Other Side of Everest, the British mountaineer and filmmaker Matt Dickinson records how Howard Somervell, on a 1924 British expedition up Everest, “found himself choking to death after a piece of infected flesh came loose and blocked his windpipe.” With a supreme effort Somervell managed to cough up the obstruction. It turned out to be “the entire mucus lining of his larynx.”

Bodily distress is notorious above 25,000 feet-the area known to climbers as the Death Zone-but many people become severely debilitated, even dangerously ill, at heights of no more than 15,000 feet or so. Susceptibility has little to do with fitness. Grannies sometimes caper about in lofty situations while their fitter offspring are reduced to helpless, groaning heaps until conveyed to lower altitudes.

The absolute limit of human tolerance for continuous living appears to be about 5,500 meters, or 18,000 feet, but even people conditioned to living at altitude could not tolerate such heights for long. Frances Ashcroft, in Life at the Extremes, notes that there are Andean sulfur mines at 5,800 meters, but that the miners prefer to descend 460 meters each evening and climb back up the following day, rather than live continuously at that elevation. People who habitually live at altitude have often spent thousands of years developing disproportionately large chests and lungs, increasing their density of oxygen-bearing red blood cells by almost a third, though there are limits to how much thickening with red cells the blood supply can stand. Moreover, above 5,500 meters even the most well-adapted women cannot provide a growing fetus with enough oxygen to bring it to its full term.

In the 1780s when people began to make experimental balloon ascents in Europe, something that surprised them was how chilly it got as they rose. The temperature drops about 3 degrees Fahrenheit with every thousand feet you climb. Logic would seem to indicate that the closer you get to a source of heat, the warmer you would feel. Part of the explanation is that you are not really getting nearer the Sun in any meaningful sense. The Sun is ninety-three million miles away. To move a couple of thousand feet closer to it is like taking one step closer to a bushfire in Australia when you are standing in Ohio, and expecting to smell smoke. The answer again takes us back to the question of the density of molecules in the atmosphere. Sunlight energizes atoms. It increases the rate at which they jiggle and jounce, and in their enlivened state they crash into one another, releasing heat. When you feel the sun warm on your back on a summer’s day, it’s really excited atoms you feel. The higher you climb, the

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×