upon opening a new drawer Conway Morris famously was heard to mutter, “Oh fuck, not another phylum.”
The English team’s revisions showed that the Cambrian had been a time of unparalleled innovation and experimentation in body designs. For almost four billion years life had dawdled along without any detectable ambitions in the direction of complexity, and then suddenly, in the space of just five or ten million years, it had created all the basic body designs still in use today. Name a creature, from a nematode worm to Cameron Diaz, and they all use architecture first created in the Cambrian party.
What was most surprising, however, was that there were so many body designs that had failed to make the cut, so to speak, and left no descendants. Altogether, according to Gould, at least fifteen and perhaps as many as twenty of the Burgess animals belonged to no recognized phylum. (The number soon grew in some popular accounts to as many as one hundred-far more than the Cambridge scientists ever actually claimed.) “The history of life,” wrote Gould, “is a story of massive removal followed by differentiation within a few surviving stocks, not the conventional tale of steadily increasing excellence, complexity, and diversity.” Evolutionary success, it appeared, was a lottery.
One creature that
Gould’s book was published in 1989 to general critical acclaim and was a great commercial success. What wasn’t generally known was that many scientists didn’t agree with Gould’s conclusions at all, and that it was all soon to get very ugly. In the context of the Cambrian, “explosion” would soon have more to do with modern tempers than ancient physiological facts.
In fact, we now know, complex organisms existed at least a hundred million years before the Cambrian. We should have known a whole lot sooner. Nearly forty years after Walcott made his discovery in Canada, on the other side of the planet in Australia, a young geologist named Reginald Sprigg found something even older and in its way just as remarkable.
In 1946 Sprigg was a young assistant government geologist for the state of South Australia when he was sent to make a survey of abandoned mines in the Ediacaran Hills of the Flinders Range, an expanse of baking outback some three hundred miles north of Adelaide. The idea was to see if there were any old mines that might be profitably reworked using newer technologies, so he wasn’t studying surface rocks at all, still less fossils. But one day while eating his lunch, Sprigg idly overturned a hunk of sandstone and was surprised-to put it mildly-to see that the rock’s surface was covered in delicate fossils, rather like the impressions leaves make in mud. These rocks predated the Cambrian explosion. He was looking at the dawn of visible life.
Sprigg submitted a paper to
Nine years later, in 1957, a schoolboy named John Mason, while walking through Charnwood Forest in the English Midlands, found a rock with a strange fossil in it, similar to a modern sea pen and exactly like some of the specimens Sprigg had found and been trying to tell everyone about ever since. The schoolboy turned it in to a paleontologist at the University of Leicester, who identified it at once as Precambrian. Young Mason got his picture in the papers and was treated as a precocious hero; he still is in many books. The specimen was named in his honor
Today some of Sprigg’s original Ediacaran specimens, along with many of the other fifteen hundred specimens that have been found throughout the Flinders Range since that time, can be seen in a glass case in an upstairs room of the stout and lovely South Australian Museum in Adelaide, but they don’t attract a great deal of attention. The delicately etched patterns are rather faint and not terribly arresting to the untrained eye. They are mostly small and disc-shaped, with occasional, vague trailing ribbons. Fortey has described them as “soft-bodied oddities.”
There is still very little agreement about what these things were or how they lived. They had, as far as can be told, no mouth or anus with which to take in and discharge digestive materials, and no internal organs with which to process them along the way. “In life,” Fortey says, “most of them probably simply lay upon the surface of the sandy sediment, like soft, structureless and inanimate flatfish.” At their liveliest, they were no more complex than jellyfish. All the Ediacaran creatures were diploblastic, meaning they were built from two layers of tissue. With the exception of jellyfish, all animals today are triploblastic.
Some experts think they weren’t animals at all, but more like plants or fungi. The distinctions between plant and animal are not always clear even now. The modern sponge spends its life fixed to a single spot and has no eyes or brain or beating heart, and yet is an animal. “When we go back to the Precambrian the differences between plants and animals were probably even less clear,” says Fortey. “There isn’t any rule that says you have to be demonstrably one or the other.”
Nor is it agreed that the Ediacaran organisms are in any way ancestral to anything alive today (except possibly some jellyfish). Many authorities see them as a kind of failed experiment, a stab at complexity that didn’t take, possibly because the sluggish Ediacaran organisms were devoured or outcompeted by the lither and more sophisticated animals of the Cambrian period.
“There is nothing closely similar alive today,” Fortey has written. “They are difficult to interpret as any kind of ancestors of what was to follow.”
The feeling was that ultimately they weren’t terribly important to the development of life on Earth. Many authorities believe that there was a mass extermination at the Precambrian-Cambrian boundary and that all the Ediacaran creatures (except the uncertain jellyfish) failed to move on to the next phase. The real business of complex life, in other words, started with the Cambrian explosion. That’s how Gould saw it in any case.
As for the revisions of the Burgess Shale fossils, almost at once people began to question the interpretations and, in particular, Gould’s interpretation of the interpretations. “From the first there were a number of scientists who doubted the account that Steve Gould had presented, however much they admired the manner of its delivery,” Fortey wrote in
“If only Stephen Gould could think as clearly as he writes!” barked the Oxford academic Richard Dawkins in the opening line of a review (in the London
And yet that was exactly the conclusion to which many general reviewers were drawn. One, writing in the
But the real heat directed at Gould arose from the belief that many of his conclusions were simply mistaken or carelessly inflated. Writing in the journal