everything above the footprints is imaginary. Almost every external aspect of the two figures-degree of hairiness, facial appendages (whether they had human noses or chimp noses), expressions, skin color, size and shape of the female’s breasts-is necessarily suppositional. We can’t even say that they were a couple. The female figure may in fact have been a child. Nor can we be certain that they were australopithecines. They are assumed to be australopithecines because there are no other known candidates.
I had been told that they were posed like that because during the building of the diorama the female figure kept toppling over, but Ian Tattersall insists with a laugh that the story is untrue. “Obviously we don’t know whether the male had his arm around the female or not, but we do know from the stride measurements that they were walking side by side and close together-close enough to be touching. It was quite an exposed area, so they were probably feeling vulnerable. That’s why we tried to give them slightly worried expressions.”
I asked him if he was troubled about the amount of license that was taken in reconstructing the figures. “It’s always a problem in making re-creations,” he agreed readily enough. “You wouldn’t believe how much discussion can go into deciding details like whether Neandertals had eyebrows or not. It was just the same for the Laetoli figures. We simply can’t know the details of what they looked like, but we
Until very recently it was assumed that we were descended from Lucy and the Laetoli creatures, but now many authorities aren’t so sure. Although certain physical features (the teeth, for instance) suggest a possible link between us, other parts of the australopithecine anatomy are more troubling. In their book
“Lucy and her kind did not locomote in anything like the modern human fashion,” insists Tattersall. “Only when these hominids had to travel between arboreal habitats would they find themselves walking bipedally, ‘forced’ to do so by their own anatomies.” Johanson doesn’t accept this. “Lucy’s hips and the muscular arrangement of her pelvis,” he has written, “would have made it as hard for her to climb trees as it is for modern humans.”
Matters grew murkier still in 2001 and 2002 when four exceptional new specimens were found. One, discovered by Meave Leakey of the famous fossil-hunting family at Lake Turkana in Kenya and called
Bipedalism is a demanding and risky strategy. It means refashioning the pelvis into a full load-bearing instrument. To preserve the required strength, the birth canal must be comparatively narrow. This has two very significant immediate consequences and one longer-term one. First, it means a lot of pain for any birthing mother and a greatly increased danger of fatality to mother and baby both. Moreover to get the baby’s head through such a tight space it must be born while its brain is still small-and while the baby, therefore, is still helpless. This means long-term infant care, which in turn implies solid male-female bonding.
All this is problematic enough when you are the intellectual master of the planet, but when you are a small, vulnerable australopithecine, with a brain about the size of an orange,[48] the risk must have been enormous.
So why did Lucy and her kind come down from the trees and out of the forests? Probably they had no choice. The slow rise of the Isthmus of Panama had cut the flow of waters from the Pacific into the Atlantic, diverting warming currents away from the Arctic and leading to the onset of an exceedingly sharp ice age in northern latitudes. In Africa, this would have produced seasonal drying and cooling, gradually turning jungle into savanna. “It was not so much that Lucy and her like left the forests,” John Gribbin has written, “but that the forests left them.”
But stepping out onto the open savanna also clearly left the early hominids much more exposed. An upright hominid could see better, but could also be seen better. Even now as a species, we are almost preposterously vulnerable in the wild. Nearly every large animal you can care to name is stronger, faster, and toothier than us. Faced with attack, modern humans have only two advantages. We have a good brain, with which we can devise strategies, and we have hands with which we can fling or brandish hurtful objects. We are the only creature that can harm at a distance. We can thus afford to be physically vulnerable.
All the elements would appear to have been in place for the rapid evolution of a potent brain, and yet that seems not to have happened. For over three million years, Lucy and her fellow australopithecines scarcely changed at all. Their brain didn’t grow and there is no sign that they used even the simplest tools. What is stranger still is that we now know that for about a million years they lived alongside other early hominids who did use tools, yet the australopithecines never took advantage of this useful technology that was all around them.
At one point between three and two million years ago, it appears there may have been as many as six hominid types coexisting in Africa. Only one, however, was fated to last:
Conventionally, the
“There is simply no compelling reason we know of to explain why human brains got large,” says Tattersall. Huge brains are demanding organs: they make up only 2 percent of the body’s mass, but devour 20 percent of its energy. They are also comparatively picky in what they use as fuel. If you never ate another morsel of fat, your brain would not complain because it won’t touch the stuff. It wants glucose instead, and lots of it, even if it means short-changing other organs. As Guy Brown notes: “The body is in constant danger of being depleted by a greedy brain, but cannot afford to let the brain go hungry as that would rapidly lead to death.” A big brain needs more food and more food means increased risk.
Tattersall thinks the rise of a big brain may simply have been an evolutionary accident. He believes with Stephen Jay Gould that if you replayed the tape of life-even if you ran it back only a relatively short way to the dawn of hominids-the chances are “quite unlikely” that modern humans or anything like them would be here now.
“One of the hardest ideas for humans to accept,” he says, “is that we are not the culmination of anything.