true.
Or you can spy it in the east before dawn, fleeing the rising Sun. In these two incarnations, brighter than anything else in the sky except only the Sun and the Moon it was known as the evening and the morning star. Our ancestors did not recognize it was a world, the same world, never too far from the Sun because it is in an orbit about it interior to the Earth’s. Just before sunset or just after sunrise, we can sometimes see it near some fluffy white cloud, and then discover by the comparison that Venus has a color, a pale lemon-yellow.
You peer through the eyepiece of a telescope—even a big telescope, even the largest optical telescope on Earth—and you can make out no detail at all. Over the months, you see a featureless disk methodically going through phases, like the Moon: crescent Venus, full Venus, gibbous Venus, new Venus. There is not a hint of continents or oceans.
Some of the first astronomers to see Venus through the telescope immediately recognized that they were examining a world enshrouded by clouds. The clouds, we now know, are droplets of concentrated sulfuric acid, stained yellow by a little elemental sulfur. They lie high above the ground. In ordinary visible light there’s no hint of what this planet’s surface, some 50 kilometers below the cloud tops, is like, and for centuries the best we had were wild guesses.
You might conjecture that if we could take a much finer look there might be breaks in the clouds, revealing day by day, in bits and pieces, the mysterious surface ordinarily hidden from our view. Then the time of guesses would be over. The Earth is on average half cloud-covered. In the early days of Venus exploration, we saw no reason that Venus should be 100 percent overcast. If instead it was only 90 percent, or even 99 percent, cloud- covered, the transient patches of clearing might tell us much.
In 1960 and 1961,
In the ultraviolet there is detail, but due to transient patches of high-altitude overcast, far above the main cloud deck. The high clouds race around the planet much faster than the planet itself turns: super-rotation. We have an even smaller chance of seeing the surface in the ultraviolet.
When it became clear that the atmosphere of Venus was much thicker than the air on Earth—as we now know, the pressure at the surface is ninety times what it is here—it immediately followed that in ordinary visible light we could not possibly see the surface, even if there
So in 1970 Jim Pollack, Dave Morrison, and I went to the McDonald Observatory of the University of Texas to try to observe Venus in the near-infrared. We “hypersensitized” our emulsions; the good old-fashioned[20] glass photographic plates were treated with ammonia, and sometimes heated or briefly illuminated, before being exposed at the telescope to light from Venus. For a time the cellars of McDonald Observatory reeked of ammonia. We took many pictures. None showed any detail. We concluded that either we hadn’t gone far enough into the infrared or the clouds of Venus were opaque and unbroken in the near infrared.
More than 20 years later, the
Then the U.S.
The world so revealed turns out to be uniquely sculpted by lava flows (and, to a much lesser degree, by wind), as described in the next chapter. The clouds and atmosphere of Venus have now become transparent to us, and another world has been visited by the doughty robot explorers from Earth. Our experience with Venus is now being applied elsewhere—especially to Titan, where once again impenetrable clouds hide an enigmatic surface, and radar is beginning to give us hints of what might lie below.
Venus had long been thought of as our sister world. It is the nearest planet to the Earth. It has almost the same mass, size, density, and gravitational pull as the Earth does. It’s a little closer to the Sun than the Earth, but its bright clouds reflect more sunlight back to space than our clouds do. As a first guess you might very well imagine that, under those unbroken clouds, Venus was rather like Earth. Early scientific speculation included fetid swamps crawling with monster amphibians, like the Earth in the Carboniferous Period; a world desert; a global petroleum sea; and a seltzer ocean dotted here and there with limestone-encrusted islands. While based on some scientific data, these “models” of Venus—the first dating from the beginnings of the century, the second from the 1930s, and the last two from the raid-1950s—were little more than scientific romances, hardly constrained by the sparse data available.
Then, in 1956, a report was published in
What
Soon there was a deluge of explanations. I argued that the high radio brightness temperature was a direct indication of a hot surface, and that the high temperatures were due to a massive carbon dioxide/water vapor greenhouse effect—in which some sunlight is transmitted through the clouds and heats the Surface, but the surface experiences enormous difficulty in radiating back to space because of the high infrared opacity of carbon dioxide and