There are 400 billion stars in the Milky Way Galaxy. Of this immense multitude, could it be that our humdrum Sun is the only one with an inhabited planet? Maybe. Maybe the origin of life or intelligence is exceedingly improbable. Or maybe civilizations arise all the time, but wipe themselves out as soon as they are able.
Or, here and there, peppered across space, orbiting other suns, maybe there are worlds something like our own, on which other beings gaze up and wonder as we do about who else lives in the dark. Could the Milky Way be rippling with life and intelligence—worlds calling out to worlds—while we on Earth are alive at the critical moment when we first decide to listen?
Our species has discovered a way to communicate through the dark, to transcend immense distances. No means of communication is faster or cheaper or reaches out farther. It’s called radio.
After billions of years of biological evolution—on their planet and ours—an alien civilization cannot be in technological lockstep with us. There have been humans for more than twenty thousand centuries, but we’ve had radio only for about one century. If alien civilizations are behind us, they’re likely to be too far behind to have radio. And if they’re ahead of us, they’re likely to be far ahead of us. Think of the technical advances on our world over just the last few centuries. What is for us technologically difficult or impossible, what might seem to us like magic, might for them be trivially easy. They might use other, very advanced means to communicate with their peers, but they would know about radio as an approach to newly emerging civilizations. Even with no more than our level of technology at the transmitting and receiving ends, we could communicate today across much of the Galaxy. They should be able to do much better.
If they exist.
But our fear of the dark rebels. The idea of alien beings troubles us. We conjure up objections:
The debate is, for the moment, moot. We are now, on an unprecedented scale, listening for radio signals from possible other civilizations in the depths of space. Alive today is the first generation of scientists to interrogate the darkness. Conceivably it might also be the last generation before contact is made—and this the last moment before we discover that someone in the darkness is calling out to us.
This quest is called the Search for Extraterrestrial Intelligence (SETI). Let me describe how far we’ve come.
The first SETI program was carried out by Frank Drake at the National Radio Astronomy Observatory in Greenbank, West Virginia, in 1960. He listened to two nearby Sun-like stars for two weeks at one particular frequency. (“Nearby” is a relative term: The nearest was 12 light-years—70 trillion miles—away.)
Almost at the moment Drake pointed the radio telescope and turned the system on, he picked up a very strong signal. Was it a message from alien beings? Then it went away. If the signal disappears, you can’t scrutinize it. You can’t see if, because of the Earth’s rotation, it moves with the sky. If it’s not repeatable, you’ve learned almost nothing from it—it might be terrestrial radio interference, or a failure of your amplifier or detector… or an alien signal. Unrepeatable data, no matter how illustrious the scientist reporting them, are not worth much.
Weeks later, the signal was detected again. It turned out to be a military aircraft broadcasting on an unauthorized frequency. Drake reported negative results. But in science a negative result is not at all the same thing as a failure. His great achievement was to show that modern technology is fully able to listen for signals from hypothetical civilizations on the planets of other stars.
Since then there’ve been a number of attempts, often on time borrowed from other radio telescope observing programs, and almost never for longer than a few months. There’ve been some more false alarms, at Ohio State, in Arecibo, Puerto Rico, in France, Russia, and elsewhere, but nothing that could pass muster with the world scientific community.
Meanwhile, the technology for detection has been getting cheaper; the sensitivity keeps improving; the scientific respectability of SETI has continued to grow; and even NASA and Congress have become a little less afraid to support it. Diverse, complementary search strategies are possible and necessary. It was clear years ago that if the trend continued, the technology for a comprehensive SETI effort would eventually fall within the reach even of private organizations (or wealthy individuals); and sooner or later, the government would be willing to support a major program. After 30 years of work, for some of us it’s been later rather than sooner. But at last the time has come.
The planetary society—a nonprofit membership organization that Bruce Murray, then the Director of JPL, and I founded in 1980—is devoted to planetary exploration and the search for extraterrestrial life. Paul Horowitz, a physicist at Harvard University, had made a number of important innovations for SETI and was eager to try them out. If we could find the money to get him started, we thought we could continue to support the program by donations from our members.
In 1983 Ann Druyan and I suggested to the filmmaker Steven Spielberg that this was an ideal project for him to support. Breaking with Hollywood tradition, he had in two wildly successful movies conveyed the idea that extraterrestrial beings might not be hostile and dangerous. Spielberg agreed. With his initial support through The Planetary Society, Project META began.
META is an acronym for “Megachannel ExtraTerrestrial Assay.” The single frequency of Drake’s first system grew to 8.4 million. But each channel, each “station,” we tune to has an exceptionally narrow frequency range. There are no known processes out among the stars and galaxies that can generate such sharp radio “lines.” If we pick up anything falling into so narrow a channel, it must, we think, be a token of intelligence and technology.
What’s more, the Earth turns—which means that any distant radio source will have a sizable apparent motion, like the rising and setting of the stars. Just as the steady tone of a car’s horn dips as it drives by, so any authentic extraterrestrial radio source will exhibit a steady drift in frequency due to the Earth’s rotation. In contrast, any source of radio interference at the Earth’s surface will be rotating at the same speed as the META receiver. META’s listening frequencies are continuously changed to compensate for the Earth’s rotation, so that any narrow- band Signals from the sky will always appear in a single channel. But any radio interference down here on Earth will give itself away by racing through adjacent channels.
The META radio telescope at Harvard, Massachusetts, is 26 meters (84 feet) in diameter. Each day, as the Earth rotates the telescope beneath the sky, a swath of stars narrower than the full moon is swept out and examined. Next day, it’s an adjacent swath. Over a year, all of the northern sky and part of the southern is observed. An identical system, also sponsored by The Planetary Society, is in operation just outside Buenos Aires, Argentina, to examine the southern sky. So together the two META systems have been exploring the entire sky.