always been difficult to design centrifugal spin sections into Warshawski Sail hyperships. Now that was no longer necessary. In addition, the decreased energy costs to transfer cargo in and out of a gravity well, coupled with the low energy and mass costs of the Warshawski sail itself
By 1790 pd, the latest generation Warshawskis could detect grav wave fronts at ranges of up to just over twenty light-seconds. A hundred years later (the time of our story) the range is up to eight light-minutes for grav wave detection and 240 light-seconds (4 light-minutes) for turbulence detection. As a result, 20th Century pd military starships routinely operate as high as the theta band of hyper-space. This translates an actual velocity of .6
In addition to his inertial compensator, Dr. Radhakrishnan also enjoys the credit for being the first to develop the math to predict and detect wormhole junctions, although the first was not actually detected until 1447 pd, many years after his death. The mechanism of the junction is still imperfectly understood, but for all intents and purposes a junction is a 'gravity fault,' or a gravitic distortion so powerful as to fold
The use of the junctions required the evolution of a new six-dimensional math, but the effort was well worthwhile, particularly since a single wormhole junction may have several different termini. Wormholes remain extremely rare phenomena, and astrophysicists continue to debate many aspects of the theories which describe them. No one has yet proposed a technique to mathematically predict the destinations of any given wormhole with reliable accuracy, but work on better models continues. At the present, mathematics can generally predict the total number of termini a wormhole will possess, but the locations of those termini cannot be ascertained without a surveying transit, and such first transits remain very tricky and dangerous.
There are other ambiguities in the current understanding of wormholes, as well. In theory, for example, one should be able to go from any terminus of a wormhole junction directly to any other. In fact, one may go from the central nexus of the junction to any of its other termini and vice versa but cannot reach any secondary terminus from another secondary. That is, one might go from point A to points B, C, or D but could not go from B to C or D without returning to A and reorienting one's vessel.
Despite their incompletely understood nature, the junctions opened a whole new aspect of FTL travel and became focusing points or funnels for trade. There were not many of them, and one certainly could not use them to travel directly to any star not connected to them, but one
In addition, of course, the discovery of wormhole junctions and a technique for their use imposed an entirely new pattern on the ongoing Diaspora. Theretofore, expansion had been roughly spherical, spreading out from the center in an irregular but recognizable globular pattern. Thereafter, expansion became far more ragged as wormhole junctions gave virtually instantaneous access to far distant reaches of space. Moreover, wormhole junctions are primarily associated with mid-range main sequence stars (F, G, and K), which gives a high probability of finding habitable planets in relatively close proximity to their far termini.
Once initial access to the far end of a wormhole junction had been attained, the habitable world at the far end (if there was one) tended to act as the central focus for its own 'mini-Diaspora,' creating globular quadrants of explored space which might be light-centuries away from the next closest explored star system.
(2) Warshawski Sail Logistics
By their very natures, the impeller drive and Warshawski Sail had a tremendous impact on the size of spacecraft. With the advent of the impeller drive, mass as such ceased to be a major consideration for sublight travel. With the introduction of the Warshawski Sail, the same became true for starships, as well. In consequence, bulk cargo carriers are entirely practical. Transport of interplanetary or interstellar cargoes is actually cheaper than surface or atmospheric transportation (even with countergrav transporters), though even at 1,200
By the same token, this mass-carrying capability means interstellar military operations, including planetary invasions and occupations, are entirely practical. A starship represents a prodigious initial investment (more because of its size than any other factor), but it will last almost forever, its operational costs are low, and a ship which can be configured to carry livestock and farm equipment can also be configured to carry assault troops and armored vehicles.
Hyperships come in three basic categories: the low-speed bulk carrier; the high-speed personnel carrier; and warships.
The maximum acceleration and responsiveness of a Warshawski Sail starship is dependent upon the power or 'grab value' of its sails and the efficiency of its inertial compensator. The more powerful (and massive) the sail generator, the greater the efficiency with which it can utilize the power of the grav wave; the more efficient the compensator, the higher the acceleration its crew can endure. Moreover, it requires an extraordinarily powerful sail, relative to the mass of the mounting ship, to endure the violent conditions of the upper hyper bands. This means that larger ships, with the hull volume to devote to really powerful sails, have greater inherent power and maximum theoretical average velocities (transit times) because they ought to be able to pull more acceleration from a given grav wave (thus reaching their optimum velocity of .6
There are, however, offsetting factors. The more powerful a Warshawski Sail, the slower its response time in realigning to a shift in the grav wave. This is potentially disastrous, but is, once more, offset to some extent by the ability of the more powerful sail to withstand greater stress. That is, it isn't as necessary to the starship's survival that it be able to reset or trim a sail to survive fluctuations in the grav wave about it. Put another way, a bigger ship with more powerful generators can 'carry more sail' under given grav wave conditions than a smaller vessel and, all other things being equal, run the smaller vessel down.
But, of course, things aren't quite that simple. For starters, a smaller, less massive vessel gains more drive from the same sail strength. Because it is less massive, it accelerates more quickly for the same power. And the inertial compensator, marvelous as it may be, becomes more effective as its field area grows smaller and the mounting vessel's mass decreases, which means that a smaller ship can take advantage of its acceleration advantage over a larger vessel riding the same grav wave (and hence having access to the same 'inertia sump') without killing its crew. If the smaller vessel can accelerate to .6
In addition, smaller ships with less powerful sails can trim them much more rapidly and with greater precision. In wet-navy terms, smaller ships tend to be 'quicker in the stays,' able to adjust course with much