наблюдать.

В ретроспективе позитивизм Кауфманна и других оппонентов атомизма кажется не только тормозившим развитие, но и наивным. Что, в конце концов, означает, что мы что-то наблюдаем? Строго говоря, Кауфманн даже не наблюдал отклонения катодных лучей в данном магнитном поле; он всего лишь измерял изменение положения светящегося пятна на противоположной стороне вакуумной трубки, вызванного тем, что вокруг куска железа, поднесенного к трубке, была несколько раз обмотана проволока, подключенная к электрической батарее, а затем использовал принятую теорию для интерпретации увиденного в терминах траектории луча и магнитных полей. Если быть совсем точным, он не делал и этого; на самом деле, он использовал определенные зрительные и тактильные ощущения, которые затем интерпретировал как светящиеся пятна, проволоку и батарею. Уже давно среди историков науки стало общепринятым, что никакое наблюдение не может быть свободным от теории[138].

Считается, что окончательная капитуляция антиатомизма произошла в 1908 г. после заявления химика Вильгельма Оствальда в очередном издании его «Очерков общей химии»: «Теперь я убежден, что недавно мы получили экспериментальные свидетельства дискретной или зернистой структуры вещества, которые тщетно искали приверженцы атомной гипотезы в течение сотен и тысяч лет». Те экспериментальные свидетельства, которые имел в виду Оствальд, заключались в измерениях молекулярного вклада в так называемом броуновском движении крохотных частиц, взвешенных в жидкости, а также в измерении Томсоном заряда электрона. Если теперь осознать, насколько перегружены теорией все экспериментальные данные, то становится очевидным, что еще в XIX в. все успехи атомной теории в химии и статистической механике подтверждали наблюдение атомов.

Гейзенберг отмечал, что сам Эйнштейн пересмотрел свое отношение к позитивизму, ощутимому в начальной формулировке теории относительности. В прочитанной в 1974 г. лекции Гейзенберг вспоминает беседу с Эйнштейном в Берлине в начале 1926 г.:

«Я заметил Эйнштейну, что мы на самом деле не можем наблюдать такую траекторию [электрона в атоме]; реально мы наблюдаем лишь частоты света, испущенного атомом, интенсивности и вероятности переходов, а не сами траектории. Поскольку кажется рациональным вводить в теорию только такие величины, которые могут быть непосредственно обнаружены, понятие траекторий электрона не должно фигурировать в теории. К моему изумлению, этот аргумент совершенно не убедил Эйнштейна. Он полагал, что всякая теория содержит на самом деле ненаблюдаемые величины. Принцип использования только наблюдаемых величин просто невозможно непротиворечиво соблюсти. И когда я возразил на это, что я просто использую ту же философию, что и он при формулировке основ специальной теории относительности, Эйнштейн ответил на это: “Может быть, раньше я и пользовался этой философией, и даже писал так, но все равно это глупость”»[139].

Еще раньше, в парижской лекции 1922 г., Эйнштейн отозвался о Махе как о «хорошем механике», но «жалком философе»[140].

Несмотря на победу атомизма и отречение Эйнштейна тема позитивизма время от времени всплывает в физике ХХ в. Позитивистская сосредоточенность на наблюдаемых, типа координат и импульсов частиц, стояла на пути «реалистической» интерпретации квантовой механики, в которой волновая функция представляет физическую реальность. Позитивизм также внес лепту в запутывание проблемы бесконечностей. Как мы видели, Оппенгеймер в 1930 г. заметил, что теория фотонов и электронов, известная как квантовая электродинамика, приводит к абсурдному результату, что испускание или поглощение фотонов электронами в атоме придает ему бесконечную энергию. Проблема бесконечностей беспокоила теоретиков в 30-е и 40-е гг., и в результате было высказано общее предположение, что квантовая электродинамика просто становится неприменимой для электронов и фотонов очень больших энергий. Значительная доля этого страха перед квантовой электродинамикой была связана с позитивистским ощущением вины: некоторые теоретики боялись, что говоря о значениях электрического и магнитного полей в той точке пространства, где находится электрон, они совершают грех, вводя в физику принципиально ненаблюдаемые элементы. Это было верно, но только тормозило открытие реального решения проблемы бесконечностей, заключающееся в том, что они сокращаются, если позаботиться об аккуратном определении массы и заряда электрона.

Позитивизм сыграл также ключевую роль в борьбе против квантовой теории поля, которую вел в 1960 г. в Беркли Джеффри Чу. Для Чу главным объектом в физике была S-матрица, таблица, в клетках которой стоят вероятности всех возможных результатов для всех возможных процессов соударения частиц. S-матрица содержит в себе все, что можно реально наблюдать, изучая реакции с любым числом частиц. Теория S-матрицы восходит к работам Гейзенберга и Джона Уилера в 30-х и 40-х гг. (S происходит от первой буквы немецкого слова Streuung, т.е. рассеяние), но Чу и его сотрудники использовали новые идеи относительно того, как вычислять S-матрицу без введения каких бы то ни было ненаблюдаемых элементов вроде квантовых полей. В конце концов эта программа провалилась[141], отчасти потому, что просто оказалось слишком сложно вычислять S-матрицу таким способом. Но прежде всего провал был обусловлен тем, что путь прогресса в понимании слабых и сильных ядерных сил оказался связанным с теми самыми квантовыми теориями полей, которые Чу пытался отвергнуть.

Однако самое драматическое отрицание принципов позитивизма связано с развитием современной теории кварков. В начале 60-х гг. Мюррей Гелл-Манн и Джордж Цвейг независимо попытались упростить невероятно сложный зоопарк частиц, известных к тому времени. Они предположили, что почти все эти частицы состоят из нескольких простых (и еще более элементарных) частиц, которые Гелл-Манн назвал кварками. Поначалу эта идея казалась совершенно не выходящей за рамки обычного для физиков способа мышления – в конце концов, это был еще один шаг по пути, указанном еще Левкиппом и Демокритом и заключающемся в том, чтобы объяснять сложные структуры с помощью более простых меньших по размеру составляющих. Картина кварков была применена в 60-е гг. к огромному количеству физических задач, связанных с протонами, нейтронами, мезонами и другими частицами, предположительно состоящими из кварков, и во всех случаях привела к хорошим результатам. Однако все попытки экспериментаторов в 60-е и начале 70-х гг. вытащить кварки из тех частиц, в которых они предположительно содержатся, полностью провалились. Это выглядело ненормально. Еще с тех пор, как Томсон вырвал электроны из атомов в катодно-лучевой трубке, всегда удавалось разбить любую составную систему вроде молекулы, атома или ядра на отдельные частицы, из которых она состоит. Почему же было невозможно выделить свободные кварки?

Картина кварков обрела смысл с развитием в начале 70-х гг. квантовой хромодинамики, современной теории сильных ядерных сил, в рамках которой запрещен любой процесс, в котором может быть выделен свободный кварк. Прорыв произошел в 1973 г., после того, как независимые вычисления Дэвида Гросса и Фрэнка Вильчека из Принстона и Дэвида Политцера из Гарварда показали, что квантовые теории определенного типа[142] обладают удивительным свойством «асимптотической свободы»: все силы, действующие между частицами, уменьшаются с ростом энергии[143]. Как раз такое уменьшение сил и наблюдалось еще в 1967 г. в опытах по рассеянию частиц при высоких энергиях[144], но в 1973 г. впервые было показано, что могут существовать теории, в которых силы ведут себя подобным образом. Этот успех быстро привел к тому, что одна из таких квантовых теорий поля – теория кварков и глюонов, получившая название квантовой хромодинамики, была признана правильной теорией сильных взаимодействий.

Первоначально считалось, что в процессах соударения элементарных частиц нельзя наблюдать глюоны, так как они очень тяжелые, и попросту не хватает энергии для рождения частиц столь большой массы. Вскоре после открытия явления асимптотической свободы некоторые теоретики предположили[145], что глюоны наоборот вообще не имеют массы, как фотоны. Если это так, то факт ненаблюдения глюонов и кварков в свободном состоянии можно объяснить тем, что обмен безмассовыми глюонами между кварками и самими глюонами порождает дальнодействующие силы, не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату