Более пятнадцати лет проблема иерархии стоит как кость в горле теоретической физики. Побудительным мотивом многих теоретических спекуляций последнего времени была необходимость ее решения. Подчеркнем, что здесь нет парадокса – в конце концов, почему бы какой-то энергии в фундаментальных уравнениях физики и не быть в 1016 раз меньше, чем другой, – но здесь есть тайна. Именно поэтому проблема так трудна. Парадокс, как убийство в запертой комнате, может иметь свое объяснение, но тайна принуждает нас искать ключи к ней вне рамок самой проблемы.
Один из подходов к решению проблемы иерархии основан на идее симметрии нового типа, названной
К сожалению, до сих пор нет ни малейших признаков существования в природе суперсимметрии или каких-то сверхсильных взаимодействий[176]. Конечно, это не может являться решающим аргументом против названных идей – новые частицы, предсказываемые в этих теориях для решения проблемы иерархии, могут оказаться слишком тяжелыми, чтобы быть рожденными на существующих ускорителях.
Мы ожидаем, что хиггсовские частицы или другие новые частицы, существование которых требуется в разных моделях решения проблемы иерархии, будут открыты на достаточно мощных новых ускорителях типа Сверхпроводящего суперколлайдера. Но нет ни малейших шансов, что любой ускоритель, какой мы только можем вообразить, сумеет ускорить отдельные частицы до тех чудовищно больших энергий, при которых объединяются все силы. Когда Демокрит и Левкипп обсуждали идею об атомах, они и вообразить не могли, что эти атомы в миллионы раз меньше, чем песчинки на берегу Эгейского моря, или что пройдет 2 300 лет прежде, чем будут получены доказательства существования атомов. Наши рассуждения подвели нас к берегу во много раз более широкого пролива: мы полагаем, что все силы природы объединяются при энергиях порядка планковской энергии, которая в 1015 раз больше самой большой энергии, доступной сегодняшним ускорителям.
Открытие этого колоссального пролива оказало на физику влияние, далеко выходящее за рамки проблемы иерархии. С одной стороны, возникло новое понимание старой проблемы бесконечностей. В стандартной модели, как и в старой доброй квантовой электродинамике, испускание и поглощение фотонов и других частиц неограниченно больших энергий приводило к бесконечно большим вкладам в энергию атома и другие наблюдаемые величины. Чтобы разобраться с этими бесконечностями, потребовалось, чтобы стандартная модель обладала особым свойством перенормируемости, заключающемся в том, что все бесконечности в теории должны сокращаться с другими бесконечностями, возникающими в определениях голых масс и других констант, входящих в уравнения теории. Это условие было очень существенным подспорьем при построении стандартной модели – только теории с простейшими из возможных уравнениями являются перенормируемыми. Но поскольку стандартная модель не включает гравитацию, мы полагаем сейчас, что она есть только низкоэнергетическое приближение к действительно фундаментальной единой теории, теряющее применимость при энергиях близких к планковской. Почему же тогда надо серьезно относиться к тому, какие предсказания дает эта теория относительно испускания и поглощения частиц неограниченно больших энергий? А раз это не имеет значения, то зачем тогда требовать перенормируемости стандартной модели? Проблема бесконечностей остается с нами, но это проблема будущей окончательной теории, а не ее низкоэнергетического приближения вроде стандартной модели.
В результате такого переосмысления проблемы бесконечностей, мы полагаем сейчас, что полевые уравнения стандартной модели не относятся к очень простому перенормируемому типу, а содержат на самом деле все мыслимые слагаемые, совместимые с симметриями теории. Но тогда нам следует объяснить, почему старые перенормируемые квантовые теории поля, вроде простейших версий квантовой электродинамики или стандартной модели работают так хорошо. Мы думаем, что причина этого коренится в том, что все члены в уравнениях поля, за исключением перенормируемых, обязательно возникают в этих уравнениях поделенными на какую-то степень величины порядка планковской энергии. Поэтому вклад таких слагаемых в любой наблюдаемый физический процесс будет пропорционален степени отношения энергии процесса к планковской энергии, т.е. величине порядка 1015. Это такое крохотное число, что естественно, все такие эффекты невозможно наблюдать. Иными словами, условие перенормируемости, являвшееся путеводной нитью всех наших размышлений от квантовой электродинамики в 40-х гг. до стандартной модели в 60-х и 70-х гг., было правильным с точки зрения практических целей, хотя причины, по которым требовалось выполнение этого условия, кажутся сейчас уже не имеющими отношения к делу.
Это изменение точки зрения имеет потенциально далеко идущие последствия. В простейшей перенормируемой версии стандартной модели возникают некоторые «случайные» законы сохранения помимо реальных фундаментальных законов сохранения, вытекающих из симметрий специальной теории относительности и внутренних симметрий, определяющих существование фотона,
Между тем, появились интригующие гипотезы о возможном нарушении закона сохранения лептонного числа. В стандартной модели этот закон сохранения ответственен за то, чтобы нейтрино были безмассовыми, но если этот закон нарушается, то можно ожидать, что у нейтрино есть маленькие массы порядка 10?5 эВ (т.е. порядка одной миллионной массы электрона). Эта масса намного меньше той, которую могли обнаружить любые лабораторные эксперименты, проведенные до настоящего времени, но тем не менее, ее наличие может приводить к тонкому эффекту, позволяющему нейтрино электронного типа (т.е. принадлежащего к тому же семейству, что и электрон) медленно превращаться в нейтрино других типов. Это могло бы объяснить давнишнюю загадку нехватки тех нейтрино, которые