фотонов, которые как раз равны разности энергий между начальным состоянием атома или молекулы и одним из состояний с большей энергией. В противном случае при поглощении фотона атомом или молекулой не сохранялась бы энергия. Типичные соединения меди имеют зелено-синий цвет, потому что существует определенное состояние атома меди, обладающее энергией, на два электрон-вольта6) большей, чем энергия нормального состояния атома. Поэтому атом особенно легко перепрыгивает в состояние с большей энергией, поглотив фотон с энергией 2 эВ. Длина волны такого фотона равна 0,62 мкм, что соответствует красно-оранжевому цвету, так что после поглощения этого фотона оставшийся отраженный свет имеет зелено-синий оттенок[12]. (Приведенное рассуждение – не просто крайне сложный способ объяснить то, что мы и так знаем про зелено-синий цвет соединений меди; подобная структура энергетических состояний атомов меди проявляется и тогда, когда они получают извне энергию другими способами, например, от пучка электронов.) Мел имеет белый цвет потому что у молекул, из которых он состоит, оказывается, нет таких уровней энергии, куда можно легко перепрыгнуть, поглощая фотоны любого цвета из видимого света.
Почему? Почему атомы и молекулы существуют только в дискретных состояниях, обладающих определенной энергией? Почему эти энергии такие, а не другие? Почему свет состоит из отдельных частиц, энергия которых обратно пропорциональна длине волны света? И почему атомы или молекулы особенно легко перепрыгивают в определенные состояния, поглощая фотоны? Все эти свойства света, атомов и молекул было невозможно понять вплоть до середины 1920-х гг., когда был развит новый подход в физике, известный как квантовая механика. В рамках квантовой механики частицы в атоме или молекуле описываются так называемой волновой функцией. Эта функция ведет себя в чем-то похоже на волну света или звука, но ее значение (точнее, значение ее квадрата) определяет вероятность обнаружения частицы в любом данном месте. Точно так же, как воздух в органной трубе может колебаться только в определенных модах, каждая из которых имеет свою длину волны, так и волновая функция частицы в атоме или молекуле может существовать только в определенных модах или квантовых состояниях, каждое из которых имеет свою определенную энергию. Когда уравнения квантовой механики применили для рассмотрения атома меди, обнаружилось, что один из электронов на далекой внешней орбите этого атома слабо связан и в результате поглощения видимого света может быть легко переброшен на следующую более высокую орбиту. Квантовомеханические вычисления показали, что энергии атома в этих двух состояниях отличаются на два электрон-вольта, что как раз равно энергии фотона красно- оранжевого света7). С другой стороны, у молекул карбоната кальция в куске мела нет подобных слабосвязанных электронов, которые могли бы поглотить фотоны какой-нибудь длины волны. Что же касается фотонов, то их свойства объясняются применением принципов квантовой механики к самому свету. Оказывается, что свет, как и атомы, может существовать только в определенных квантовых состояниях с определенной энергией. Например, красно-оранжевый свет длиной волны 0,62 мкм может существовать только в состояниях с энергиями, равными нулю или 2, 4, 6 и т.д. эВ, которые мы интерпретируем как состояния без фотонов или содержащие один, два, три и т.д. фотонов, энергия каждого из которых равна 2 эВ.
Почему? Почему уравнения квантовой механики, определяющие поведение частиц в атомах, таковы, каковы они есть? Почему вещество состоит из этих частиц, электронов и атомных ядер? Почему в этом веществе возникает излучение света? Большая часть этих вопросов была довольно загадочной и в 1920-е, и в 1930-е гг., когда квантовая механика была впервые применена для описания атомов и света. Достаточное понимание пришло лишь около пятнадцати лет тому назад8) в связи с успешным развитием так называемой стандартной модели элементарных частиц и сил. Ключевым предварительным условием этого нового понимания было объединение в 1940-х гг. квантовой механики с другой революционной теорией в физике ХХ в. – эйнштейновской теорией относительности. Принципы теории относительности и квантовой механики почти несовместимы друг с другом и могут сосуществовать лишь в рамках очень узкого класса теорий. В рамках нерелятивистской квантовой механики 1920-х гг. можно было вообразить почти любой характер сил, действующих между электронами и ядрами, но в релятивистской теории, как мы увидим, это не так: силы, действующие между частицами, могут возникать только за счет обмена другими частицами. Более того, вообще все частицы представляют собой сгустки энергии или кванты полей разного сорта. Поле, например электрическое или магнитное, есть некий вид напряжения в пространстве, напоминающий разные виды напряжений, возможные в твердом теле, с той разницей, что поле есть напряжение самого пространства. Каждому сорту элементарных частиц соответствует свой тип поля: в рамках стандартной модели имеется электронное поле, квантами которого являются электроны; электромагнитное поле (состоящее из электрического и магнитного полей), квантами которого являются фотоны; однако не существует поля, соответствующего атомным ядрам или частицам (протонам и нейтронам), из которых ядра составлены, но есть поля разных типов частиц, называемых кварками, из которых состоят протоны и нейтроны; есть и еще несколько полей, на которых мы сейчас останавливаться не будем. Уравнения полевой теории типа стандартной модели описывают поведение не частиц, а полей; частицы возникают как проявления этих полей. Обычная материя состоит из электронов, протонов и нейтронов просто по той причине, что все другие массивные частицы чудовищно нестабильны. Считается, что стандартная модель что-то объясняет не потому, что она представляет собой набор каких-то собранных в кучу обрывков, работающих по неизвестным причинам. На самом деле структура стандартной модели в значительной степени фиксируется начальным выбором набора полей, входящих в теорию, и общими принципами (вроде принципов теории относительности и квантовой механики), которые управляют взаимодействием этих полей.
Почему? Почему мир состоит только из этих полей, а именно полей кварков, электронов, фотонов и т.п.? Почему их свойства такие, как предполагается в стандартной модели? И почему именно для этой материи природа подчиняется принципам теории относительности и квантовой механики? К сожалению, ответов на эти вопросы пока нет. Комментируя современное положение дел в физике, теоретик из Принстона Дэвид Гросс перечисляет открытые вопросы: «Теперь, когда мы понимаем, как все это работает, мы начинаем спрашивать себя, а почему существуют именно кварки и лептоны, почему структура материи повторяется в трех поколениях кварков и лептонов, почему все силы обязаны своим происхождением локальным калибровочным симметриям? Почему, почему, почему?»[13] (Используемые Гроссом понятия объясняются в следующих главах нашей книги.) Именно надежда когда-нибудь найти ответ на эти вопросы и делает занятие физикой элементарных частиц столь увлекательным.
Общеизвестно, что слово «почему» имеет весьма неопределенный смысл. Философ Эрнст Нагель приводит десять вариантов вопросов, в которых это слово употребляется в десяти разных смысловых значениях[14], например: «Почему лед плавает на воде?», «Почему Кассий организовал убийство Цезаря?» и «Почему у людей есть легкие?». На ум приходят и другие примеры, в которых слово «почему» употребляется в ином смысле, скажем, «Почему я родился?» В последнем примере использование слова «почему» похоже по смыслу на его использование во фразе «Почему лед плавает на воде?» и не предполагает какой-либо осознанной цели.
Но даже и в этом случае довольно сложно точно сказать, что же делает человек, пытаясь ответить на такой вопрос. К счастью, в этом нет необходимости. Научное объяснение есть некий способ поведения, доставляющий нам такое же удовольствие, как любовь или искусство. Наилучший способ понять, что же такое научное объяснение, это испытать особое чувство воодушевления, возникающее тогда, когда кто- нибудь (лучше всего, вы сами) добивается реального объяснения какого-то явления. Я совсем не имею в виду что можно заниматься научными объяснениями без всяких правил. Здесь существуют такие же ограничения, как в любви и в искусстве. Во всех трех случаях есть общепринятые истины, которые следует уважать, хотя, конечно, эти истины совершенно различны в науке, любви и искусстве. Я также не утверждаю, что совсем не интересно попытаться описать, как устроена наука, но думаю, что для работы в науке это не нужно, точно так же, как это не нужно в искусстве и в любви.