«Конечно, туг много неожиданного, — говорят астрономы. — Обычно звезды разнесены друг от друга на громадные расстояния во многие световые годы. Бывают, конечно, двойные и кратные звезды, обращающиеся вокруг общего центра масс. Но равновесие сил в таких системах большая редкость, чреватая катастрофами. Звезды в таких системах кружат друг подле друга, как воины перед схваткой, и могут в итоге слиться, поглотить друг друга. А чтобы звезда рождала себе подобных — такое мы вообще видим впервые».

В данном случае новорожденные звезды отстоят от материнской всего на 0,04-0,05 светового года. Причем никакого желания поглотить их она не выказывает. Напротив, полагают ученые, эти звездочки образовались как раз потому, что материнское небесное тело, обладая переизбытком массы (оно в 1 тыс. раз превосходит по массе наше Солнце), стало сбрасывать ее в окружающее пространство в виде огромных протуберанцев. Некоторые из них отрывались и становились самостоятельными небесными телами.

«Живородящая» звезда в созвездии Единорога отстоит от нас на 2500 световых лет. Это, в сущности, не так уж далеко, если иметь в виду, что только наша Галактика имеет в поперечнике около 100 тыс. световых лет. Раньше звезду и ее окружение не удалось разглядеть потому, что ее заслоняет от нас газовая туманность, из которой рано или поздно тоже должны образоваться новые звезды. Поэтому только в инфракрасных лучах удалось разглядеть, что же происходит там дальше, за туманной завесой.

Обнаружен край Вселенной? Открытия, сделанные тем же «Хабблом» в последние годы, могут удивить кого угодно. Более 40 млрд галактик — вот сколько новых небесных объектов сразу открыл он только в январе 1996 года. Правда, это не конкретные галактики, обнаруженные в определенном месте, а новая оценка размеров Вселенной. Она была произведена после того, как орбитальный телескоп заглянул в глубь пространства и времени, запечатлев на снимках те окраины Вселенной, куда еще никогда не проникал человеческий взор.

До последнего времени считалось, что всего во Вселенной порядка 10 млрд галактик. Теперь же эта цифра увеличена вчетверо. Сколько же тогда всего на свете звезд, если только в нашем Млечном Пути, как уже говорилось, их около 250 млрд?

Увеличить количество небесных объектов помогла новая техника. Например, недавно для наблюдений астрономы выбрали один из секторов небосвода около ручки «ковша» Большой Медведицы. Несмотря на то что сектор был взят крошечный — 1/25 градуса (такой угловой размер имеет песчинка, лежащая на ладони вытянутой руки) — и никакими особыми звездами не примечательный, внимательный взор позволил за 12 суток — с 18 до 29 декабря 1995 года различить здесь тысячи галактик, прежде неизвестных ученым.

У одних наблюдалась привычная форма спирали или эллипса, другие оказались вытянутыми в линию, третьи вообще образовали причудливые фигуры, которым и названия не подберешь. По мнению астрономов, эти последние, по-видимому, не вышли из «детского сада» — стадии протогалактик. Примерно так же 10 млрд лет тому назад должен был выглядеть и наш Млечный Путь.

Таким образом, с помощью современной техники астрономам удалось разглядеть объекты, в 4 млрд раз более тусклые, чем может различить на небе невооруженный глаз. Ну а поскольку в астрономии наблюдается четкая зависимость между пространством и временем, то получается: «Хаббл» увидел Вселенную такой, какой она была «на заре туманной юности», раз в 20 ближе к моменту ее рождения, чем к сегодняшним дням.

Молекулы в космосе

Современная техника также позволяет рассмотреть в космосе не только огромные объекты, но и самые маленькие. Речь в данном случае идет о молекулах и атомах.

Если раздуть «электронное облако»… В начале века знаменитый датский ученый Нильс Бор предположил, что атом по своему внешнему виду несколько похож на воздушный шарик. Оболочку его составляет «электронное облако» — электроны, вращающиеся по своим орбитам вокруг компактного ядра, слепленного из протонов и электронов.

Позднее ученые усовершенствовали эту модель, разобрались во многих тонкостях процессов микромира. И стало понятно, что «электронное облако» тоже можно «раздуть». Достаточно добавить электрону дополнительную энергию, и он перейдет на более высокую орбиту. А значит, атом увеличится в объеме.

В обычных, земных условиях «раздутое» состояние не может быть устойчивым. Соседние атомы, находящиеся в той же кристаллической решетке, помешают «электронному шару» раздуваться до бесконечности. Он вскоре потеряет излишнюю энергию, отдав ее в пространство в виде электромагнитного излучения. Электрон при этом перейдет на более низкую орбиту, и атом снова приобретет нормальные размеры.

Были выяснены и пределы увеличения. По теории выходило, что число уровней орбиты, на которых может находиться возбужденный электрон, не превышает десятка. Но это опять-таки в земных условиях, где атомов в кубическом сантиметре пространства обычно больше, чем пассажиров в переполненном трамвае. А если заглянуть в бездонные глубины космоса? Там ведь могут отыскаться участки, где количество атомов в том же объеме измеряется единицами. А значит, есть и принципиальная возможность расти, «раздуваться» чуть ли не беспредельно: соседи-тому не мешают.

Теоретики — и в их числе известный астрофизик Н. С. Кардашев — в свое время указывали, где можно наблюдать скопления таких атомов-гигантов — в разреженных межзвездных, даже межгалактических облаках, состоящих из ионов водорода и гелия.

Поиски в облаках. Облака эти тоже не бог какая новость для науки. Уже около 80 лет астрономы знают, что космическое пространство между звездами в нашей Галактике не является полностью пустым, а заполнено газом, содержащим небольшие гранулы пыли.

Хотя элементы, образующиеся в звездах, чаще всего существуют в виде отдельных атомов или инертных гранул, время от времени они образуют и молекулы. Причем некоторые из них настолько необычны, что об этом стоит поговорить подробно.

Но разговор наш может состояться лишь в том случае, если теория не вступит в противоречие с практикой. Или, говоря иначе, подобные атомы и молекулы-гиганты действительно можно обнаружить во Вселенной.

Однако звездолеты строить мы пока не научились. Как же тогда выяснить, в каком именно состоянии вещество в межгалактических облаках, какие размеры имеют составляющие его атомы и молекулы?

Ученые решили предпринять обходной маневр великанов стали искать по их следам. Мы уже говорили, что при переходе с орбиты на орбиту электроны в атомах либо получают энергию, либо отдают ее в виде излучения. А раз так, это можно обнаружить спектроскопическими методами. То есть по виду излучения, по длине его волны, исследователи, находясь на поверхности нашей планеты, могут судить, при переходе с какого на какой электронный уровень оно было получено.

Так говорила теория. Но на самом деле все выглядело вовсе не столь уж гладко даже на бумаге. Те же теоретические расчеты показывали: атомов с электронами на высших уровнях в природе очень мало. Кроме того, при большом удалении от ядра интенсивность излучения электрона резко падает. Да и само излучение приходится на такие диапазоны, где много помех как природного (все звезды имеют свои «радиоголоса»), так и искусственного, земного происхождения (на тех же длинах волн работают многие промышленные установки и радиостанции). Да вдобавок еще и эффект Доплера мешает.

О последнем, пожалуй, стоит сказать пару слов особо — это еще пригодится нам в дальнейшем.

Дело в том, что атомы в межзвездном пространстве, конечно, не стоят на месте, а беспрерывно движутся, причем с большими скоростями. Такие колебания, метания вокруг некоего центра свойственны всем атомам, нагретым выше температуры асболютного нуля (-273,6 ёС). А физики давно заметили, что частота излучения меняется в зависимости от того, в каком направлении — от нас или к нам —движется тело. Вы и сами могли в том убедиться: гудок приближающейся электрички звучит иначе, чем удаляющейся…

А поскольку атомы движутся не по расписанию, как электрички, а хаотично, излученные ими спектры накладываются друг на друга, размываются, становятся весьма трудно различимыми. Так что когда

Вы читаете Тайны космоса
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату