Наш следующий шаг – изменение некоторых имен. SignedFactor теперь становится SignedTerm а вызовы Factor в Expression, Add, Subtract и SignedTerm заменяются на вызов Term:
{–}
{ Parse and Translate a Term with Optional Leading Sign }
procedure SignedTerm;
var Sign: char;
begin
Sign := Look;
if IsAddop(Look) then
GetChar;
Term;
if Sign = '-' then Negate;
end;
{–}
...
{–}
{ Parse and Translate an Expression }
procedure Expression;
begin
SignedTerm;
while IsAddop(Look) do
case Look of
'+': Add;
'-': Subtract;
end;
end;
{–}
Если память мне не изменяет мы однажды уже имели и процедуру SignedFactor и SignedTerm. У меня были причины сделать так в то время... они имели отношение к обработке булевой алгебры и, в частности, булевой функции «not». Но, конечно, для арифметических операций дублирование не нужно. В выражении типа:
–x*y
очевидно, что знак идет со всем термом x*y а не просто с показателем x и таким способом Expression и закодирован.
Протестируйте этот новый код, выполнив Main. Она все еще вызывает Expression, так что теперь вы должны быть способны работать с выражениями, содержащими любую из четырех арифметических операций.
Наше последнее дело, относительно выражений, это модификация процедуры Factor для разрешения выражений в скобках. Используя рекурсивный вызов Expression мы можем уменьшить необходимый код практически до нуля. Пять строк, добавленные в Factor, выполнят эту работу:
{–}
{ Parse and Translate a Factor }
procedure Factor;
begin
if Look ='(' then begin
Match('(');
Expression;
Match(')');
end
else if IsDigit(Look) then
LoadConstant(GetNumber)
else if IsAlpha(Look)then
LoadVariable(GetName)
else
Error('Unrecognized character ' + Look);
end;
{–}
К этому моменту ваш «компилятор» должен уметь обрабатывать любые допустимые выражения, которые вы ему подбросите. Еще лучше, что он должен отклонить все недопустимые!
Пока мы здесь, мы могли бы также написать код для работы с операциями присваивания. Этот код должен только запомнить имя конечной переменной, где мы должны сохранить результат выражения, вызвать Expression, затем сохранить число. Процедура показана дальше:
{–}
{ Parse and Translate an Assignment Statement }
procedure Assignment;
var Name: string;
begin
Name := GetName;
Match('=');
Expression;
StoreVariable(Name);
end;
{–}
Присваивание вызывает еще одну подпрограмму генерации кода:
{–}
{ Store the Primary Register to a Variable }
procedure StoreVariable(Name: string);
begin
EmitLn('LEA ' + Name + '(PC),A0');
EmitLn('MOVE D0,(A0)');
end;
{–}
Теперь измените вызов в Main на вызов Assignment и вы должны увидеть полную операцию присваивания, обрабатываемую правильно. Довольно хорошо, не правда ли? И безболезненно также.
В прошлом мы всегда старались показывать БНФ уравнения для определения синтаксиса, который мы разрабатываем. Я не сделал этого здесь и давно пора это сделать. Вот эти БНФ:
<factor> ::= <variable> | <constant> | '(' <expression> ')'
<signed_term> ::= [<addop>] <term>
<term> ::= <factor> (<mulop> <factor>)*