var L1, L2: string;
begin
Match('d');
L1 := NewLabel;
L2 := NewLabel;
Expression;
EmitLn('SUBQ #1,D0');
PostLabel(L1);
EmitLn('MOVE D0,-(SP)');
Block(L2);
EmitLn('MOVE (SP)+,D0');
EmitLn('DBRA D0,' + L1);
EmitLn('SUBQ #2,SP');
PostLabel(L2);
EmitLn('ADDQ #2,SP');
end;
{–}
{ Recognize and Translate a BREAK }
procedure DoBreak(L: string);
begin
Match('b');
EmitLn('BRA ' + L);
end;
{–}
{ Recognize and Translate an «Other» }
procedure Other;
begin
EmitLn(GetName);
end;
{–}
{ Recognize and Translate a Statement Block }
procedure Block(L: string);
begin
while not(Look in ['e', 'l', 'u']) do begin
case Look of
'i': DoIf(L);
'w': DoWhile;
'p': DoLoop;
'r': DoRepeat;
'f': DoFor;
'd': DoDo;
'b': DoBreak(L);
else Other;
end;
end;
end;
{–}
{ Parse and Translate a Program }
procedure DoProgram;
begin
Block('');
if Look <> 'e' then Expected('End');
EmitLn('END')
end;
{–}
{ Initialize }
procedure Init;
begin
LCount := 0;
GetChar;
end;
{–}
{ Main Program }
begin
Init;
DoProgram;
end.
{–}
Булевы выражения
В пятой части этой серии мы рассмотрели управляющие конструкции и разработали подпрограммы синтаксического анализа для трансляции их в объектный код. Мы закончили с хорошим, относительно богатым набором конструкций.
Однако, когда мы оставили синтаксический анализатор, в наших возможностях существовал один большой пробел: мы не обращались к вопросу условия ветвления. Чтобы заполнить пустоту, я представил вам фиктивную подпрограмму анализа Сondition, которая служила только как заменитель настоящей.
Одним из дел, которыми мы займемся на этом уроке, будет заполнение этого пробела посредством расширения Condition до настоящего анализатора/транслятора.
Мы собираемся подойти к этой главе немного по-другому, чем к любой другой. В других главах мы начинали немедленно с экспериментов, используя компилятор Pascal, выстраивая синтаксические анализаторы от самых элементарных начал до их конечных форм, не тратя слишком много времени на предварительное планирование. Это называется кодированием без спецификации и обычно к нему относятся неодобрительно. Раньше мы могли избегать планирования, потому что правила арифметики довольно хорошо установлены... мы знаем, что означает знак '+' без необходимости подробно это обсуждать. То же самое относится к ветвлениям и циклам. Но способы, которыми языки программирования реализуют логику, немного отличаются от языка к языку. Поэтому прежде, чем мы начнем серьезное кодирование, лучше мы сперва примем решение что же мы хотим. И способ сделать это находится на уровне синтаксических правил БНФ (грамматики).
Некоторое время назад мы реализовали синтаксические уравнения БНФ для арифметических выражений фактически даже не записав их все в одном месте. Пришло время сделать это. Вот они:
<expression> ::= <unary op> <term> [<addop> <term>]*
<term> ::= <factor> [<mulop> factor]*