'КОРИЧНЕВЫЕ', ИЛИ ИНФРАКРАСНЫЕ, КАРЛИКИ

Экзопланеты с очень большой массой, около десяти масс Юпитера (например, HD 168443 b, HD 114762 b, HD 89744 b), вероятно, относятся к 'коричневым', или инфракрасным, карликам. Поиск таких карликовых 'несостоявшихся' звезд велся давно. Ш. Кумар, который предложил название 'коричневые карлики', работал над их теорией с 1958 года. Термоядерная реакция синтеза гелия из водорода – это 'мотор' всех нормальных звезд, включая Солнце. Но если масса формирующейся звезды составляет не более 4% солнечной, положение осложняется: возможна только термоядерная реакция 'горения' дейтерия, а условия для 'горения' водорода не выполняются; если же масса звезды очень мала, менее 0,013 массы Солнца (или менее 13 масс Юпитера), термоядерные реакции в ней вообще не возникают. Термоядерная реакция на основе дейтерия действует кратковременно и дает сравнительно мало энергии, поэтому установить наличие реакции у таких слабых объектов, как 'коричневые карлики', трудно. (Следует добавить, что, если масса тела очень велика и достигает 63 Mю, в нем может возникнуть термоядерная реакция на основе изотопов лития.)

Планетами такие тела назвать нельзя, но и звездами они не становятся, а постепенно сжимаются до размеров, меньших Юпитера, причем более массивные карлики имеют меньшие размеры. За счет сжатия долго поддерживается умеренно высокая температура поверхности, до 1300 К (в то время как у самых холодных звезд температура поверхности составляет не менее 2000 К). Продолжительность жизни инфракрасных карликов очень велика, не менее миллиарда лет. Впервые настоящий инфракрасный карлик был найден Д. Латамом и его коллегами в 1989 году у звезды HD 114762. Для него параметр Msini = 11 Mю, а реальная масса может достигать нескольких десятков масс Юпитера. Орбита его имеет период 84 дня и большой эксцентриситет (0,33). Такие тела могут находиться на 'нормальных' экзопланетных орбитах. В 1998 году А. Бьюроуз исследовал вероятные физические характеристики таких объектов на примере другого инфракрасного карлика, Gliese 229 b, имеющего эффективную температуру около 950 К. Его период около 200 лет и Msini = 40 Mю.

Благодаря особенностям спектра излучения 'коричневый карлик' Gliese 229 b удалось сфотографировать в инфракрасных лучах. Инфракрасные карлики, по- видимому, и сами могут иметь планеты. На инфракрасном снимке системы 'коричневого карлика' 2M1207 белый яркий объект – это сам 'карлик', а красный – его планета, удаленная в десять раз дальше, чем Юпитер от Солнца, что и позволило сделать такой снимок (см. 'Наука и жизнь' № 11 2006, фото 5).

Разными группами исследователей найдено около десятка тел с массами до 60 масс Юпитера. Парадокс, однако, в том, что их должно быть гораздо больше, и не только потому, что их легче обнаружить. Инфракрасными карликами обладают не более 1% исследованных звезд. Но их очень много в областях интенсивного звездообразования, например в широко известной туманности Ориона.

Вероятное внутреннее строение экзопланеты HD 149026 b в сравнении с Юпитером. Высокая средняя плотность (около 1 г/см3) указывает на новый тип короткопериодических экзопланет.

ЗАКЛЮЧЕНИЕ

Горячие и холодные (высокоорбитальные) планеты-гиганты, несомненно, интересны, но что можно сказать о поисках планет типа Земли? К сожалению, почти ничего. Чувствительность МЛС позволяет уверенно находить внесолнечные планеты-гиганты, но до задачи обнаружить планету земного типа чувствительность метода не дотягивает примерно в 30 раз. В недалеком будущем появятся новые способы обнаружения внесолнечных планет с массой Земли, но пока их нет. Все же положение небезнадежно. Предполагается, что готовящиеся космические миссии KEPLER, COROT и GAIA смогут исследовать десятки тысяч звезд с фотометрической точностью до 0,00001 и обнаружить у них множество планетных объектов с транзитами. Согласно плану миссии, только аппарат KEPLER за четыре года работы сможет исследовать 100 тысяч звезд. Точность метода будет достаточной для обнаружения транзитов планетных тел даже с размерами Земли, в отношении которых существующие наземные технические средства пока бессильны. В этих проектах будут использованы и другие методы кроме МЛС.

Но пренебрегать МЛС не стоит. Пионеры открытия экзопланет, швейцарская группа исследователей, продолжают совершенствовать свой метод. Им удалось довести предельную чувствительность спектрографа HARPS до 1 м/с. С помощью 3,6-метрового телескопа Европейской южной обсервато рии в Чили совсем недавно, в 2006 году, у звезды HD 69830 обнаружена необычная система из трех планет с массами всего от 10 до 18 масс Земли (то есть каждая меньше массы Нептуна). Две планеты с периодами 8,37 и 31,6 суток находятся на низких орбитах, но орбита третьей планеты, с периодом 197 суток, подобна орбите Венеры. Так как звезда HD 69830 немного менее массивна, чем Солнце, можно говорить, что эта планета находится в зоне, почти пригодной для жизни (хотя планета с такой большой массой вряд ли годится для обитания). Звезда HD 69830 находится на расстоянии менее 13 пк и видна невооруженным глазом.

В конце ХХ века с открытием экзопланет Солнечная система перестала быть единственной известной планетной системой. Уникальность Земли обсуждали с разных точек зрения: в IV веке до н. э. – философы Аристотель и Эпикур, в XVI веке – Коперник. Готовясь к практическим поискам, в 1938 году Р. Айткен писал, что обнаружение планет у других звезд методом лучевых скоростей находится за пределами возможного. Но через 56 лет эти пределы значительно раздвинулись.

Экзопланеты и экзопланетные системы разительно отличаются от нашей Солнечной системы, где нет ничего, похожего на 51Peg b, ?Boo b или 55Cnc b. В чем причина столь необычных свойств Солнечной системы? Не вникая в подробности, следует сказать о важной роли, которую играет в ней Юпитер. Орбитальные свойства всех планет Солнечной системы находятся в резонансных соотношениях. Существенным фактором в ее истории было образование Юпитера. Две волны метеоритной бомбардировки около четырех миллиардов лет назад сыграли в ней важную роль. В конечном счете возникло стабильное низкоэнтропийное состояние Солнечной системы, в котором Юпитер и другие гиганты, имеющие устойчивые орбиты, защищают внутренние планеты от ударов опасных небесных объектов, уменьшая эту опасность на много порядков. Существуют даже варианты 'антропного принципа', утверждающие, что самим своим возникновением и развитием земная жизнь обязана Юпитеру.

Может быть, сам Юпитер, как главное и определяющее тело планетной системы, образовался в необычных условиях? Существует гипотеза, что в период формирования Солнечной системы с ней сближалась другая звезда, из-за чего система приобрела необычные свойства. Если учесть, что протопланетные газово-пылевые диски значительно различаются по массам, планетные системы, в свою очередь, могут представлять собой целый набор образований с резко различающимися свойствами. Несомненно, что существенную роль играет скорость потерь туманностью водорода в критический для формирования планет период. Концентрация газа и пыли в протопланетном диске, с одной стороны, и масса образующейся планеты, с другой, определяют их приливные взаимодействия и возможную миграцию

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату