Первые «видящие» роботы — это различные опознающие устройства, применяемые в медицине и криминалистике.

Принципиально то, что робот может «видеть» гораздо лучше человека. Ведь человеческому глазу доступна лишь оптическая часть спектра электромагнитных волн. А электронное устройство свободно от биологических ограничений. Его можно, например, сделать чувствительным к инфракрасным и ультрафиолетовым лучам. К электронному глазу можно подключить радар. Он способен видеть в темноте и при сверхярком свете, работать в комплексе с телескопом или микроскопом, фиксировать сверхбыстрые и сверхмедленные процессы.

Современные фотореле реагируют на невидимые глазом участки спектра (инфракрасное и ультрафиолетовое излучение), способны регистрировать изменения параметров света, происходящие с частотой до миллиона колебаний в секунду (предельная частота, воспринимаемая человеческим глазом, 20 Гц).

Как уже говорилось, электронными элементами зрения в технике являются фотоэлементы — устройства, которые при освещении меняют свои электрические характеристики (одни из них под действием света начинают пропускать электрический ток, другие сами становятся источниками тока). Основное различие между человеческим глазом и фотоэлементом состоит в том, что глаз в сочетании с мозгом создаёт детальное изображение увиденного, фотоэлемент же всего лишь различным образом реагирует на факт наличия света.

На рис. 46 показана увеличенная структура сетчатки глаза, состоящей из палочек и колбочек. Любая чувствительная к свету клетка сетчатки соединена непосредственно со зрительным нервом, а также с другими клетками, которые, в свою очередь, соединены между собой. Таким образом, световой сигнал уже на этом этапе «продумывается». Сам глаз человека выполняет часть функций осмысливания, свойственных головному мозгу.

Подобно сетчатке глаза устроен экран электроннолучевых передающих трубок, состоящий из множества микроскопических элементов диаметром около 1 мкм (рис. 47). Ток каждого микрофотоэлемента трубки коммутируется электронным лучом, построчно пробегающим по всем микрофотоэлементам экрана.

Чтобы научить робота видеть, нет нужды приделывать ему голову с глазами. Как ни странно, у роботов — манипуляторов глаза, как правило, находятся в руке… Вот вам пример. Представьте себе, что вместо рабочего у печи стоит робот — механическая рука. В управляющей вычислительной машине заложена программа его действий. Нужно только отдать команду приступить к работе (рис. 48).

Рис. 46 Структура сетчатки г газа

Рис. 47 Экран передающей те ревизионной трубки

Рис. 48. Манипулятор за работой

Робот зашевелился, протянул клешню в печь, нащупал раскалённую деталь, взял её точно посередине, осторожно вынул, перенёс, минуя окружающие предметы, к ванне и опустил в масло. Вернулся за второй деталью, взял её точно так же, потом за третьей, четвёртой… И так без устали, без передышки.

Для этого у него есть все возможности. В его клешне расположены фотоглаза, которыми робот «видит» деталь и на расстоянии, и в непосредственной близости.

На рис. 49 показана структурная схема электронного блока робота, занимающегося построением «домиков» из кубиков под зрительным контролем. Телевизионная камера наблюдает за работой руки (глаз системы). Электронно — вычислительное устройство управляет механической рукой на основе анализа телевизионных сигналов и информации о положении руки. Эта, казалось бы, очень простая задача требует создания сложнейших программ для ЭВМ. Следует сказать, что на пути к созданию машин, способных приспосабливаться к окружающей обстановке, самое трудное препятствие — проблема искусственного зрения. Это огромное поле деятельности для любого человека, интересующегося системами электронного зрения и их практическим воплощением. А вот как всё начиналось.

Рис. 49 Схема интегрального робота

Рис. 50 Селеновый фотоэлемент

В 1917 году шведский химик Йене Берцелиус открыл новый химический элемент — селен. Было замечено, что в обычных условиях он проводит электрический ток очень плохо. Если включить в цепь (рис. 50) батареи и миллиамперметра пластину селена, то, пока свет не попадёт на неё, ток в цепи будет очень слабым, так как удельное сопротивление селена велико. Но стоит лишь осветить селеновую пластину, как сопротивление её резко уменьшается, а ток возрастает. Чем больше будет освещённость пластины, тем меньше её сопротивление и тем сильнее ток в цепи.

Научное объяснение фотосопротивления было дано много лет спустя после его открытия. Сделал это наш выдающийся соотечественник Александр Григорьевич Столетов.

В наше время любой юный техник без особого труда может сделать фототранзистор. Принцип действия фототранзистора основан на чувствительности к свету полупроводникового р — и перехода. Кванты света, падая на переход, высвобождают в нём электроны. Чем больше световой энергии попадает на полупроводник, тем больше высвобождается электронов. В результате появляется дополнительный электрический ток через эмиттерный переход, управляющий сопротивлением транзистора. Для изготовления фоторезистора необходим исправный транзистор МП40 или МП42 со статическим коэффициентом передачи тока h 2 i3 = 40… 100 и начальным током коллектора не более 20 мкА. Лобзиком осторожно спиливают крышку транзистора и тщательно удаляют с кристалла попавшие на него металлические опилки. Если эти операции выполнены аккуратно, транзистор не изменит параметров. Убедившись в этом, вы можете считать, что справились с изготовлением фоторезистора.

Окончательно проверяют работоспособность самодельного фоторезистора авометром (рис. 51). Эмит — терный вывод фототранзистора присоедините к тому зажиму прибора, который соединён с плюсовым полюсом внутренней батареи. Базовый вывод оставьте свободным.

Когда на фототранзистор не попадает свет (прикройте его плотной бумагой), авометр должен показывать сопротивление более 50 кОм.

Теперь поднесите к фототранзистору включённую настольную лампу так, чтобы ещё лучи падали на кристалл под прямым углом со стороны эмиттерного вывода. Стрелка омметра должна тут же отметить резкое уменьшение проходного сопротивления. На расстоянии 5… 10 см от лампы проходное сопротивление коллектор — эмиттер фототранзистора должно упасть до 100…200 Ом.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату