Многие учёные в разных странах пытались решить эту задачу, конструируя небольшие механические устройства, поведение которых обладало бы некоторыми чертами живых существ. Первыми такими моделями явились две черепахи английского учёного Грея Уолтера, названные им Эльзи и Эльмер. Устроены они были очень просто: небольшие тележки на колёсах с двумя электродвигателями, двигающими их вперёд и в стороны, фотоэлемент, «ус», замыкающий контакт в случае соприкосновения с препятствием, и блок управления.
При всей простоте черепах их поведение представляло большой интерес. В темноте они двигались беспорядочно, как бы в поисках чего-то. Когда появлялся свет, они немедленно его «замечали» и направлялись к источнику света. Приблизившись к нему, они начинали блуждать вокруг, стараясь всё время «видеть» свет. Наткнувшись на препятствие, черепахи старались его обойти.
Широко известна также мышь Шеннона, блуждающая внутри специально изготовленного лабиринта. Натыкаясь множество раз на препятствия и обходя их, мышь в конце концов находила выход из лабиринта. Но во второй и последующих попытках она достигала цели уже значительно быстрее, используя «знания», приобретённые во время первого путешествия, и двигаясь по более короткому пути.
Интересна также игрушка — робот Эдмунда Беркли, которую он построил с помощью школьников. Она представляет собой тележку с моторным приводом и моторным управлением. Авторы назвали игушечно — го робота «белка». Белка имеет два фотоэлемента — две лапки, которые могут раздвигаться или сдвигаться на уровне пола, образуя, чашечку, язычок внутри чашечки и металлический хвостик, волочащийся по полу. В блоке управления белки имеются коммутирующие реле и фильтр, позволяющий различать постоянный и переменный токи.
Как же работает белка? Большая пустая комната освещена лампами накаливания. По полу в беспорядке разбросаны белые шарики. В одном из углов лежит металлический лист, освещённый люминесцентной лампой, — это гнездо белки. Белка наугад ищет, пока в поле зрения её фотоэлементов не попадёт белый шарик. Тогда она направляется к нему, раздвигает лапки, останавливается и сдвигает их, захватывая шарик. Язычком, находящимся между лапками, белка обнаруживает шарик. Затем она поворачивается и ищет гнездо. Поскольку оно освещено мигающим светом люминесцентной лампы (в отличие от непрерывного света ламп накаливания), электрический фильтр позволяет ей распознать направление. Белка направляется к гнезду, заползает на металлический лист и останавливается на нём, так как замыкание цепи между листом и её металлическим хвостиком даёт знать, что она дома. Белка раздвигает лапки, выбрасывая шарик, и снова направляется на поиск следующего.
ПРОСТЕЙШИЕ МОДЕЛИ С ИСПОЛЬЗОВАНИЕМ ЛОГИЧЕСКИХ УСТРОЙСТВ
Как заставить модель обходить, не задевая встречающиеся на пути предметы? Сделать в домашних условиях локатор сложно, да он и не нужен. Глазами автомобиля или робота могут быть фотодатчики. Свет фар, отражённый от преграды и принятый фото датчиками, расскажет логическому устройству о ситуации на дороге. Логическое устройство примет нужное решение и отдаст ту или иную команду исполнительным реле: включить указатель поворота и повернуть направо или налево; продолжить путь по прямой; включить предупреждающие красные фонари, звуковой сигнал или заднюю фару с фотодатчиком и двигаться назад, если оба передних датчика зафиксировали препятствие.
9. МОДЕЛИРОВАНИЕ ПАМЯТИ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
НА ПУТИ К СОЗДАНИЮ ИСКУССТВЕННОГО МОЗГА
Важнейшим объектом исследования нейрокибернетики является самая сложная биологическая система — человеческий мозг. Исследуя процессы, происходящие в головном мозге, можно изучить совокупность операций, которые приводят человека к решению творческих задач. Несмотря на сложность этой проблемы, творческие процессы познаваемы, как и любые другие процессы, происходящие в природе.
Мозг обладает способностью сопоставлять, анализировать и обобщать получаемую им информацию, а запоминает лишь наиболее важную её часть. После закрепления информации память человека освобождается для новых потоков информации. Одно из основных проявлений памяти заключается в способности узнавания и воспроизведения. Человек может закрыть глаза и воспроизвести в своей памяти картину, которую он видел в прошлом. Можно через несколько десятков лет показать этому человеку часть фотографии этой картины, и он сразу же узнает и воспроизведёт в своей памяти всю её целиком.
Наши сведения о структуре и функциях мозга в настоящее время ещё весьма неполны, зачастую они основаны лишь на догадках. О мозге мы знаем значительно меньше, чем о других органах живого существа. Каждый из нас необычайно мало использует возможности своей памяти.
Человек всегда помнит больше, чем ему кажется. По свидетельству современников, Юлий Цезарь и Александр Македонский знали в лицо и по имени всех своих солдат, а ведь их было очень много — 30 тыс. А. Алёхин помнил все сыгранные шахматные партии и, не глядя на доски, мог одновременно играть более чем с 20 партнёрами.
Сейчас никто не в состоянии дать исчерпывающий ответ на все вопросы, связанные с деятельностью мозга: 6 механизме памяти, об удивительной системе произвольного доступа к огромным запасам информации, хранящейся в мозгу, о гибкости и надёжности памяти человека. Но великий русский физиолог И. М. Сеченов, очень хорошо понимавший титаническую трудность проблемы, утверждал, что предпосылки для понимания функций мозга состоят в «…строгом разборе его машинности».
Успехи кибернетики и бионики — лучшее доказательство справедливости этого тезиса. Новым наукам, развиваемым совместными усилиями физиологов, математиков и специалистов по электронике, союз которых оказался чрезвычайно плодотворным, по плечу любая задача. Рано или поздно учёные смогут узнать самые сокровенные тайны мозга.
Решение сложных задач с помощью электронных систем невозможно без устройств памяти. Все автоматы, о которых мы рассказали выше, хорошо умеют разбираться в потоках сигналов, поступающих на входы. Но, к сожалению, эти автоматы не извлекают уроков из своей деятельности. Один и тот же сигнал или совокупность сигналов вызывают у автомата всегда одну и ту же реакцию. А ведь известно, что наиболее интересными видами деятельности являются такие, которые используют память. Знающий, т.е. помнящий, действует лучше, чем незнающий. И если мы хотим, например, моделировать сложные поведенческие черты живых организмов, нам следует заняться конструированием устройств памяти автоматов.
Учёного-кибернетика мозг интересует прежде всего как пример разумной машины, созданной самой природой. Кибернетики пытались подойти к этой задаче с позиций физиологов. Мозг человека оказался настолько сложной системой, что разобраться в деталях его работы было невозможно. И только аналогия в работе мозга и вычислительной машины наметила подход к решению этой сложнейшей проблемы.
Создавая первые ЭВМ, инженеры мало знали о строении мозга. Они стремились создать машину, которая бы быстро и точно могла производить вычисления. Сходство ЭВМ с человеческим мозгом было обнаружено позже, когда физиологи при изучении мозга стали сравнивать известные им факты с тем, что они узнали от специалистов по вычислительной технике.
Прежде всего физиологи обратили внимание на бинарность в поведении нервной системы. Оказывается, каждое нервное волокно в любой момент либо «включено», либо «выключено». Оно либо