нас самих, сходная с нами во всех подробностях”.
Не угодно ли, однако, убедиться в этом сходстве? У вас на правой щеке родинка – у вашего двойника правая щека чиста, но на левой щеке есть пятнышко, которого у вас на этой щеке не имеется. Вы зачесываете волосы
Рис. 99. Такие часы имеет при себе двойник, которого вы видите в зеркале.
Наконец, у вашего зеркального двойника есть физический недостаток, от которого вы, надо думать, свободны: он левша. Он пишет, шьет, ест левой рукой, и если вы выразите готовность с ним поздороваться, он протянет вам левую руку.
Нелегко решить, грамотен ли ваш двойник. Во всяком случае грамотен как-то по особенному. Едва ли удастся вам прочесть хоть одну строку из той книги, которую он держит, или какое-нибудь слово в тех каракулях, которые он выводит своей левой рукой.
Таков тот человек, который притязает на полное сходство с вами! А вы хотите судить по нему о внешнем виде вас самих…
Шутки в сторону: если вы думаете, что, глядя в зеркало, видите самих себя, – вы заблуждаетесь. Лицо, туловище и одежда у большинства людей не строго симметричны (хотя мы этого обычно не замечаем): правая половина не вполне сходна с левой. В зеркале все особенности правой половины переходят к левой, и наоборот, так что перед нами является фигура, производящая зачастую совсем иное впечатление, чем наша собственная.
Нетождественность зеркального отражения с оригиналом еще заметнее выступает в следующем опыте.
Поставьте перед собой отвесно на стол зеркало, положите перед ним бумажку и попробуйте нарисовать на ней какую-нибудь фигуру, например прямоугольник с диагоналями. Но не смотрите при этом прямо на свою руку, а следите лишь за движениями руки, отраженной в зеркале.
Вы убедитесь, что столь легкая на вид задача почти невыполнима. В течение многих лет наши зрительные впечатления и двигательные ощущения успели прийти в определенное соответствие. Зеркало нарушает эту связь, так как представляет глазам движения нашей руки в искаженном виде. Давнишние привычки будут протестовать против каждого вашего движения: вы хотите провести линию вправо, а рука тянет влево, и т. п.
Рис. 100. Рисование перед зеркалом.
Еще больше неожиданных странностей вы встретите, если вместо простого чертежа попробуете рисовать перед зеркалом более сложные фигуры или писать что-нибудь, глядя на строки в зеркале: выйдет комичная путаница!
Те отпечатки, которые получаются на пропускной бумаге, – тоже изображения зеркально симметричные. Рассмотрите надписи, испещряющие вашу пропускную бумагу, и попробуйте прочесть их. Вам не разобрать ни одного слова, даже вполне отчетливого: буквы имеют необычный наклон влево, а главное, последовательность штрихов в них не та, к какой вы привыкли. Но приставьте к бумаге зеркало под прямым углом – и вы увидите в нем все буквы написанными так, как вы привыкли их видеть. Зеркало дает симметричное отражение того, что само является симметричным изображением обыкновенного письма.
Мы знаем, что в однородной среде свет распространяется прямолинейно, т. е. скорейшим путем. Но свет избирает скорейший путь также и в том случае, когда не идет от одной точки к другой непосредственно, а достигает ее, предварительно отразившись от зеркала.
Проследим за его путем. Пусть буква A на рис. 101 обозначает источник света, линия MN – зеркало, а линия АВС – путь луча от свечи до глаза C. Прямая KB перпендикулярна к MN.
По законам оптики угол отражения 2 равен углу падения 1. Зная это, легко доказать, что из всех возможных путей от A к C, с попутным достижением зеркала MN, путь АВС – самый скорый. Для этого сравним путь луча АВС с каким-нибудь другим, например с ADC (рис. 102). Опустим перпендикуляр АЕ из точки A на MN и продолжим его далее до пересечения с продолжением луча ВС в точке F. Соединим также точки F и D. Убедимся, прежде всего, в равенстве треугольников ABE и EBF. Они – прямоугольные, и у них общий катет ЕВ; кроме того, углы EFB и ЕАВ равны между собой, так как соответственно равны углам 2 и 1. Следовательно, AE = EF. Отсюда вытекает равенство прямоугольных треугольников AED и EDF по двум катетам и, следовательно, равенство AD и DF.
Рис. 101. Угол отражения 2 равен углу падения 1.
Рис. 102. Свет, отражаясь, избирает кратчайший путь.
Ввиду этого мы можем путь АВС заменить равным ему путем CBF (так как AB = FB), a путь ADC – путем CDF. Сравнивая же между собой длины CBF и CDF, видим, что прямая линия CBF короче ломаной CDF. Отсюда путь АВС короче ADC, что и требовалось доказать!
Где бы ни находилась точка D, путь АВС всегда будет короче пути ADC, если только угол отражения равен углу падения. Значит, свет действительно избирает самый короткий и самый скорый путь из всех возможных между источником, зеркалом и глазом. На это обстоятельство впервые указал еще Герон Александрийский, замечательный греческий механик и математик II века.
Уменье находить кратчайший путь в случаях, подобных сейчас рассмотренным, может пригодиться для решения некоторых головоломок. Вот пример одной из таких задач.
На ветке дерева сидит ворона. Внизу на дворе рассыпаны зерна. Ворона спускается с ветки, схватывает зерно и садится на забор. Спрашивается, где должна она схватить зерно, чтобы путь ее был кратчайшим (рис. 103).
Рис. 103. Задача о вороне. Найти кратчайший путь до забора.
Рис. 104. Решение задачи о вороне.
Задача эта совершенно сходна с той, которую мы только что рассмотрели. Нетрудно поэтому дать правильный ответ: ворона должна подражать лучу света, т. е. лететь так, чтобы угол 1 был равен углу 2 (рис. 104). Мы уже видели, что в таком случае путь оказывается кратчайшим.
Всем известна хорошая игрушка, носящая название калейдоскопа: горсточка пестрых осколков отражается в двух или трех плоских зеркальцах и образует удивительно красивые фигуры, разнообразно меняющиеся при малейшем повороте калейдоскопа. Хотя калейдоскоп довольно общеизвестен, мало кто подозревает, какое огромное число разнообразных фигур можно получить с его помощью. Допустим, вы держите в руках калейдоскоп с 20 стеклышками и 10 раз в минуту поворачиваете его, чтобы получить новое расположение отражающихся стеклышек. Сколько времени понадобится вам, чтобы пересмотреть все получающиеся при этом фигуры?
Самое пылкое воображение не предусмотрит правильного ответа на этот вопрос. Океаны высохнут и горные цепи сотрутся, прежде чем будут исчерпаны все узоры, чудесным образом скрытые внутри вашей маленькой игрушки, потому что для осуществления всех их понадобится по крайней мере 500000 миллионов