Сообщив эти сведения, автор школьного учебника обнадеживает читателя тем, что поиск протозвезд усиленно ведется во многих обсерваториях. Внимательный учащийся может и сам задать вопрос: значит, протозвезды на самом деле еще не найдены? – Действительно, среди астрономов нет единого мнения, можно ли какие-то фрагменты видимых газо-пылевых объектов (в том же созвездии Ориона) считать протозвездами, то есть явно гравитационно стягивающимися и разогревающимися сгустками материи. Протозвезда должна существовать миллионы лет. Наша галактика насчитывает миллион миллионов звезд, самых разных предполагаемых «возрастов», но ни одного бесспорного «звездного младенца» – протозвезды – среди них не найдено. Не странно ли? Не свидетельствует ли это против такой упрощенной схемы звездной эволюции?
Каково же преимущество такой модели звездной эволюции? – Только одно: модель показывает, что звезды образуются сами собой, естественным течением событий на протяжении длительного времени. Проще сказать, модель удобна тем, что исключает Творца и Промыслителя. Других собственно научных преимуществ, равно как и фактических подтверждений для этой теории не видно.
Впрочем, не все астрономы придерживаются гипотезы протозвезд. Школа академика Амбарцумяна, к примеру, полагает, что звезды образовались из некоего дозвездного вещества, но об этой теории в учебнике не упоминается. Не проще ли, не логичнее ли полагать, не видя ни одного объекта, могущего быть настоящим звездным «предком», что звезды созданы примерно в нынешнем своем виде и не столь уж давно?
Но вернемся к предложенной школьникам модели звездной эволюции. Что ожидает протозвезду после «зажигания» и превращения в обычную звезду? Указываются три возможных конечных стадии: или это просто потухший белый карлик, или нейтронная звезда, или «черная дыра». Здесь просто вещи не названы своими именами, но все три исхода представляют собою состояние тепловой смерти. В самом деле, потухшая звезда, в которой «сгорели» все легкие элементы, превратившись в средние (см. диаграмму ядерных потенциалов) – не имеет уже никаких собственных источников энергии. Образовавшееся в ней вещество находится в тепловом равновесии с окружающей средой. Никаких дальнейших перспектив развития у потухшей звезды не видится. Что же касается нейтронной звезды или «черной дыры», то в рамках известных законов природы для них также нет перспектив развития. Некорректно вообще говорить об их тепловой энергии, поскольку в них нет вещества в обычном понимании, ни его теплового движения. Вся «дыра» представляет собою одно сжатое гравитацией гигантское «ядро». Никакой направленной энергии, никакой упорядоченной структуры здесь не найти.
Такое состояние можно назвать не тепловою, а гравитационною смертью, но суть дела от этого не меняется – в любом случае мы можем видеть только деградацию звезды, но никак не эволюцию. Эволюция предполагает восходящее развитие. Дрова в печке не претерпевают эволюции, хотя и проходят какие-то стадии: от серого к красному и далее к черному. Подобно тому и в «эволюции» звезд. Источники «термоядерного горючего» исчерпаемы и «выгорание» необратимо превращается в тепло, излучаемое в окружающую среду. Других источников энергии не указывается. О какой эволюции после этого может идти речь?
Совершенно неправдоподобным и произвольным представляется высказанное в учебнике предположение, что взрывы сверхновых обогащают межзвездное пространство тяжелыми элементами. Действительно, для синтеза тяжелых ядер нужна значительная энергия. Но эта энергия должна быть направленной. Взрывы, как известно, производят разрушение и хаос, но не порядок и не структуру. Если при высокой температуре взрыва возникнет случайно более тяжелое и менее устойчивое ядро, оно гораздо легче распадется благодаря той же самой высокой температуре при первом же столкновении с любой частицей. То же самое касается и химических соединений: случайно возникшие более сложные и потому менее устойчивые молекулы тут же разлагаются обратным ходом реакции, так что для направленного синтеза продукты реакции необходимо быстро выводить из реактора. Впрочем, подробнее о химических соединениях будет сказано ниже.
Итак, происхождение тяжелых элементов во Вселенной остается загадкой. Равным образом совершенно непонятно в рамках традиционных представлений материализма происхождение звезд и какие-либо поступательные пути их развития. А что предполагают ученые о происхождении Вселенной в целом?
ТЕОРИЯ «БОЛЬШОГО ВЗРЫВА»
В школьном учебнике астрономии излагается распространенная до недавнего времени теория о том, что Вселенная возникла в результате так называемого «большого взрыва» первоначального сверхплотного ядра, разделившегося впоследствии на газо-пылевую массу, из которой и сформировались сначала прото-звезды, а затем и звезды. Какие причины привели к взрыву ядра, какая энергия обусловила взрыв? На этот вопрос ответа пока не дается, на том трудно оспоримом основании, что в столь сверхплотном состоянии материи могли действовать совершенно неведомые нам законы природы. Так или иначе, энергия этого взрыва должна была быть столь огромной, чтобы преодолеть колоссальные силы гравитации и кроме того, обеспечить потенциальную энергию будущих ядерных превращений.
Основанием этой теории служит предполагаемое разбегание всех галактик друг от друга, то есть расширение Вселенной. Известно, что излучение от удаляющегося источника любых волн воспринимается с меньшей частотой (и большей длиной волны), чем собственная частота удаляющегося источника. Это явление называется эффектом Допплера, оно рассматривается в школьном учебнике и должно быть знакомо учащимся. Наглядной иллюстрацией эффекта Допплера служит наблюдение за кругами на воде, расходящимися от пловца. Перед пловцом волны как бы сплюснуты, а позади него значительно шире, чем если бы он колебал воду, находясь на одном месте (рис. 3).
Собственная частота излучения звезд определяется по их спектрам. Каждый элемент, например водород или гелий, обладает определенным набором собственных частот излучения. Оказывается, что спектры удаленных звезд воспроизводят почти в точности спектры известных на земле элементов, но с небольшим смещением всех линий спектра в сторону увеличения длины волны – в красную сторону спектра. Это явление в астрономии названо «красным смещением» и трактуется как следствие разбегания всех астрономических объектов и эффекта Допплера.
В учебнике астрономии приводится простой способ определения скорости удаления излучающего объекта по величине «красного смещения», если последнее действительно обусловлено эффектом Допплера. Таким образом можно экспериментально определить скорости «разбегания» всех астрономических объектов.
Но что дает нам скорость удаления объекта от нас? Используя простейшие приемы сложения векторов, легко показать, что если две точки удаляются от третьей со скоростями, пропорциональными расстояниям до нее, то и друг от друга эти две точки удаляются со скоростью, пропорциональной расстоянию между ними, причем с тем же коэффициентом пропорциональности (рис. 4). Исходя из того, что никакая звезда во Вселенной не должна обладать каким-то особым качеством, логично предположить, что все звезды и галактики удаляются друг от друга со скоростями, пропорциональными расстоянию между ними, и таким образом вся Вселенная расширяется.
Это предположение дается в школьном учебнике под названием закона Хаббла, который гласит, что скорость удаления галактики от нас пропорциональна расстоянию до нее.
Коэффициент этой пропорциональности приближенно оценили по наблюдениям за относительно близкими объектами, до которых можно определить расстояния геометрическими методами (по годичным параллаксам).
Приняв приближенно некое значение этого коэффициента и назвав его постоянной Хаббла, определили по «закону Хаббла» расстояния до всех далеких астрономических объектов по величине