для прикладных целей. Так, еще несколько десятилетий назад возникла мысль о создании электрического генератора со сверхпроводящими обмотками: что из того, что нет пока высокотемпературных сверхпроводников? Нужно строить генераторы с охлаждением. Действительно, если охладить обмотки, выполненные из «обычного» сверхпроводящего материала, жидким гелием, то они должны потерять сопротивление. А это означает повышение мощности. Криогенный генератор той же мощности, что и обычный, можно будет существенно уменьшить в размерах. Значит, предел, почти достигнутый сегодня для обычних генераторов по мощности отодвинется. Коэффициент полезного действия такой машины возрастет, и стоимость вырабатываемой электроэнергии уменьшится. Расчеты показывают, что крио- генераторы позволят поднять предел мощности для единичной машины почти вдвое.

Эксперименты в области применения сверхнизких температур во Всесоюзном научно- исследовательском институте электромашиностроения начались еще в 1962 году. Сначала был построен двигатель постоянного тока мощностью всего 3 кВт. Потом — модельный криотурбогенератор на 18 кВт. В конце 70-х годов на испытательный стенд встал экспериментальный криотурбогенератор мощностью 1200 кВт с самым большим в мире вращающимся криостатом. А в начале 1983 года специалисты института готовили под промышленную нагрузку криогенный генератор мощностью 20 тысяч кВт. Это была самая крупная машина среди аналогичных генераторов. Руководил коллективом академик И.А. Глебов.

Несмотря на то что принцип получения электрической энергии со времен Фарадея остался неизменным, современный генератор — это довольно сложная машина. Но криогенный генератор — сложен вдвойне. Голубой цилиндр соединен трубопроводами, шлангами и проводами со вспомогательной аппаратурой. Стоит на испытательном стенде ВНИИэлектромаша. Что в нем особенного, необычного? Прежде всего, ротор криогенного генератора по конструкции напоминает скорее стальной сосуд-криостат. В него непрерывно на ходу подается жидкий гелий. Медные шины обмотки пронизывают тысячи тончайших нитей-проводников из сверхпроводящего сплава. Они-то и обеспечивают основные преимущества новой машины. Вакуумные камеры-изоляторы сохраняют холод в генераторе. Испаряясь, гелий поступает в компрессор. Снова сжижается и возвращается в машину по замкнутому циклу. Обмотки статора охлаждаются жидким фреоном. Эта жидкость нам известна по бытовым холодильникам. Фреон одновременно выполняет и роль изолятора.

Обращает внимание то, что вокруг генератора много вспомогательной аппаратуры: тут резервуары с гелием и вакуумные насосы, компрессор и теплообменный агрегат — охладитель фреона… Неудивительно, что над созданием этой уникальной машины трудились коллективы не одного производственного объединения. Вместе с «Электросилой», Ижорским заводом и заводом «Красный выборжец» в создании всего комплекса криогенератора принимали участие московское научно- производственное объединение «Гелиймаш», ВНИИхолодмаш и другие организации[34].

Очень сложна новая современная техника. Порою закрадывается сомнение: а не понижается ли со сложностью конструкции и надежность? Специалисты уверяют: нет! Не снижается! Потому что одновременно растет совершенство технологии изготовления, улучшаются материалы, повышается качество. Конечно, сложность не украшение. Но за получаемый выигрыш по мощности приходится чем-то расплачиваться. И чаще всего эта плата выражается в усложнении либо технологии производства, либо конструкции. Но люди быстро привыкают к новому. Даже чудо, повторенное дважды, перестает быть чудом.

Столь новыми и необычными для электромашиностроения работами занимаются в Ленинграде. На Дворцовой набережной, неподалеку от Дома ученых расположившегося в бывшем Ново-Михайловском дворце, стоит дом, сооруженный более ста лет тому назад архитектором А.И. Штакеншнейдером. Сегодня в нем и располагается Всесоюзный научно-исследовательский институт электромашиностроения. Конечно, разместить современный НИИ в помещении старого дома — задача трудновыполнимая. Здесь, на набережной, находится лишь административная часть института. Производственная же база — лаборатории, конструкторские бюро, испытательные стенды — все это размещено по соседству с «Электросилой».

ВНИИэлектромаш — организация сравнительно молодая. Ветераны считают годом ее рождения 1950-й. Именно тогда, всего через пять лет после окончания Великой Отечественной войны, Президиум АН СССР принял решение об организации в Ленинграде первой лаборатории автоматики[35]. Несмотря на огромный ущерб, нанесенный народному хозяйству войной, Советский Союз примерно за 2, 5 года восстановил уровень промышленного производства 1940 года. Но для дальнейшего движения нужно было самое широкое внедрение во все отрасли народного хозяйства и в быт электрической энергии. Формула В.И. Ленина, данная им еще в 1920 году, продолжала быть не менее актуальной.

Но теперь нужна была электроэнергия, вырабатываемая централизованно на мощных электростанциях, объединенных высоковольтными сетями в крупные энергетические системы. Строительство таких систем без автоматизации было просто невозможно. Вот почему важным шагом явилось создание в Ленинграде скромной лаборатории автоматики.

С самого начала своего существования в лаборатории были созданы непревзойденные по своему времени модели Куйбышевской и Свирской ГЭС, линий электропередач, связывающих Ленинград и Москву с новыми электростанциями. На моделях гидротурбин и мощных генераторов сотрудники лаборатории решали самые актуальные задачи специального электромашиностроения. За работы по электродинамическому моделированию энергосистем академик М.П. Костенко и доктор технических наук В.А. Веников были удостоены в 1958 году Ленинской премии.

За первое десятилетие своего существования молодая лаборатория стала Институтом электромеханики АН СССР, прошла большой путь, вобрав в себя целый ряд других научных учреждений и расширив деятельность на всю отрасль мощного электромашиностроения.

Во втором десятилетии лаборатория стала Всесоюзным научно-исследовательским институтом, который занимается фундаментальными проблемами в области теории и методов расчета электрических машин. На этот институт возложена ответственность за передовей уровень крупных электрических машин, которыми по праву славится отечественная промышленность., 0т мощных турбо — и гидрогенераторов и высоковольтных линий передач до двигателей на тепловозах и прецизионных систем управления, например, телескопом — вот диапазон разработок этой научной организации.

Чтобы разговор о сверхпроводниках был достаточно полным, нужно вспомнить еще об одной ключевой проблеме физики нашего столетия. Речь идет о создании металлического водорода.

Мы уже говорили, что при глубоком охлаждении ниже 20, 3 К, то есть минус 252, 7 °С, водород превращается в жидкость. Если же охлаждение продолжать и дальше, то уже при 14 градусах Кельвина, или при минус 259 — по привычной стоградусной шкале Цельсия полученная жидкость замерзает и превращается в твердый молекулярный водород. Если теперь его подвергнуть огромному давлению в миллионы бар, то мы должны получить совершенно новое и совершенно замечательное вещество с удивительными свойствами — металлический водород. Есть предположения, что этот наиболее распространенный в обозримой вселенной элемент в металлической фазе находится в недрах планет- гигантов — Юпитера, Сатурна, может быть Урана и Нептуна. Физикам-теоретикам давно уже в общем виде (по расчетам) известны структура металлического водорода и его свойства. Причем есть достаточно веские основания предполагать, что именно металлический водород окажется высокотемпературнымсверхпроводником с критической температурой 100-200 К (или минус 173, а может быть, даже и просто минус 73 градуса Цельсия). Сумей мы его получить — проблема сверхпроводимости была бы решена.

В чем же дело, почему до сих пор нет у нас этого замечательного материала? Ведь создать необходимое давление в принципе не так уж и сложно. Что же останавливает экспериментаторов?

Оказывается, что пока на Земле, не существует материалов, способных выдержать такие давления. В опытах при достижении даже меньших значений начинал деформироваться или «течь» даже алмаз — а уж он ли не символ, не критерий твердости нашего мира!

Значит, осуществить получение металлического водорода в земных условиях невозможно? Зачем же тогда говорить о нем? Но физики считают, что надежда не окончательно потеряна, что в конце концов будут созданы на основе алмаза такие камеры или «наковальни», которые не потекут при давлениях

Вы читаете Заклятие Фавна
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату