Кеннеттом и центрами обоих кругов. Он также может быть соединен с помошью репера с Силбери-Хиллом. Компьютер дает для Силбери-Хилла к Бишопс-Каннингсу угол чуть больше 83° и, следовательно, угол чуть меньше 7° для Бишопс-Каниингса. Эти углы легче всего произвести, разделив пополам угол в 14°, который является производным от отношения 4:1 (см. Приложение 3). Это лишний раз показывает, что Силбери- Хилл является исходным объектом в размещении всех ключевых мест в комплексе Марлборо-Даунс.

Решенная головоломка
Каким бы невероятным ни показалось мое открытие композиции из двойных кругов на Марлборо-Даунс, я теперь доказал вне всякого сомнения, что даже с помощью примитивной техники съемки вполне можно было спланировать эту огромную композицию на местности. Для этого совершенно необходимы были глубокие знания геометрии, математики и техники съемки, а инструменты можно было найти в любой лесистой местности. Всего-то и требовалось несколько молодых деревцев, обрезанных до определенной длины, немного веревки или бечевки и несколько колышков. Сложнее всего было определить исходные точки съемки. Это потребовало большого количества рабочих, особенно для сооружения такого объекта, как Силбери-Хилл. Но этим изобретательным людям, похоже, все было по плечу. Весь район можно рассматривать сегодня как «святое пространство», как справедливо указывали в 1996 году Вудворды в своей статье в «Просидингс ов зе Прехисторик Сосайети»:
Открытие ключевой роли Силбери-Хилла как платформы съемки дает ответ на одну из величайших загадок района Эйвбери. Без этого нельзя было бы создать композицию двойных кругов на Марлборо-Даунс. Выявились многие аспекты тайны Марлборо-Даунс. Мне еще предстояло открыть, как древние могли вычислить пропорции Земли. И оставалась неразгаданной еще одна головоломка: зачем древние создали эту таинственную ландшафтную композицию?
Глава 13
Измеряя землю
Каким бы удивительным это ни показалось, вычисление размеров Земли представляет меньшую трудность, нежели измерение расстояния от Лондона до Эдинбурга. В опубликованной в 1436 году «Математике для миллиона» Ланселот Хогбен прямо заявляет:
Он мог бы добавить: «И измерить полярную окружность Земли». Что же за поразительное устройство изображено на его рисунке 46. Оно не сложнее штыря, воткнутого в ровную деревянную подставку (рис. 93). Трудность лишь в том, чтобы установить штырь строго вертикально и с достаточной точностью измерить его высоту.

Помешенный на солнце штырь отбрасывает тень, которую можно затем измерить в разное время дня и года. Строя углы с верхушки штыря, можно вычислить дни солнцестояния (21 июня и 21 декабря) и равноденствия (21 марта и 21 сентября). Например, в дни равноденствия угол, образованный тенью, отброшенной штырем в полдень, всегда будет равным широте. Если тень коснется 55,5°, значит, вы находитесь на широте 55,5°.
Эта простая идея была использована древними египтянами для определения длины меридиана. Впервые дугу меридиана измерил, как считается, древнегреческий ученый Эратосфен (276-194 годы до н.э.), живший в Александрии. Он знал, что в день летнего солнцестояния солнце находится в зените в Сиене – современном Асуанев 800 километрах (500 милях) к югу. Он измерил угол тени, отброшенной обелиском в Александрии в день летнего противостояния. Этот угол в 7° и приблзительное расстояние между Александрией и Сиеной позволили ему вычислить дугу меридиана и размеры Земли. И тем не менее он всего лишь повторил то, что уже знали древние египтяне (рис. 94). В «Тайне Великой пирамиды» Питер Томпкинс отмечает:
Переведите это на язык английского ландшафта, и вы поймете, что люди неолита должны были лишь поставить два вертикальных столба на меридиане север-юг на расстоянии нескольких миль друг от друга, чтобы получить тот же результат. Если при этом углы, образованные отброшенными тенями, были тщательно измерены и было известно расстояние между двумя столбами, то не составило труда вычислить меридиан с помощью простой геометрии.
Следует иметь в виду, что в Англии длина одного градуса долготы и одного градуса широты почти одна и та же. Она совершенно одинакова на 55-й параллели вблизи от линии Стены Хэдриана. Разница в длинах градуса долготы и градуса широты в Эйвбери составляет только 88 метров (290 футов). Иначе