анализа систем безопасности: моделирование возможных угроз, определение механизмов защиты и проектирование системы безопасности. Чем сложнее система, тем тяжелее выполнить такой анализ. Все становится очень запутанным: спецификации, проект, создание и использование системы. Дерево атак для любой сложной системы становится гигантским. И, как мы уже неоднократно убедились, все это релевантно анализу безопасности.
Последняя, шестая причина – повышенные требования к испытаниям сложных систем. В главе 22 говорилось об испытаниях безопасности. Я доказывал, что единственно разумный способ исследования безопасности системы состоит в проведении тестирования непосредственно на ней. Однако чем сложнее система, тем труднее сделать такие оценки. Чем сложнее система, тем больше будет возникать ошибок, имеющих отношение к безопасности, и в спецификации, и в процессе разработки, и при вводе в действие. И, к сожалению, количество ошибок и трудности их распознавания растут не пропорционально возрастанию сложности, а намного быстрее.
Предельно упрощая, допустим, что система имеет 10 различных настроек, по 2 возможных варианта. Тогда 45 различных комбинаторных сочетаний могут взаимодействовать самым неожиданным образом, и в целом наберется 1024 различные конфигурации. Каждое взаимодействие способно привести к недостаткам безопасности и должно быть особо проверено. Теперь предположите, что система имеет 20 различных настроек. Это означает 190 различных сочетаний (по 2 из 20) и примерно 1 миллион конфигураций (2^20). 30 различных настроек определяют 435 различных пар и миллиард конфигураций. Даже небольшие увеличения в сложности системы означают стремительный рост количества различных конфигураций.
Увеличение числа возможных взаимодействий приводит к возрастанию объема работы во время оценки безопасности. Для системы с умеренным количеством параметров проверка всех двухпараметрических взаимодействий – тоже немалая работа. Проверка каждой возможной конфигурации – сложнейшая задача. Таким образом, трудность проведения оценки безопасности растет по мере увеличения сложности. Появление дополнительных потенциальных изъянов и усложнение анализа безопасности неизбежно приводит к уменьшению надежности систем.
В современных системах ситуация не столь сложна; часто параметры ортогональны, то есть независимы. Конечно, раз системы усложняются, то число связей увеличивается. Это происходит, например, если параметры находятся на разных уровнях в системе, и эти уровни разделены строго определенным интерфейсом. Такое разделение системы на относительно независимые модули с четко определенными интерфейсами – признак удачной разработки. Правильное разделение на модули может значительно уменьшить эффективную сложность системы, при этом все важные функции будут сохранены. Конечно, параметры в пределах одного модуля могут взаимодействовать, и эти взаимодействия должны быть проанализированы, поэтому количество параметров должно быть сведено к минимуму. Разбиение на модули работает хорошо при использовании должным образом, но многие реальные системы все же имеют взаимозависимости, которые позволяют параметрам в различных модулях влиять друг на друга.
Более сложная система менее надежна с любой точки зрения. Прежде всего, она содержит большее количество уязвимых мест, а ее модульность усиливает эти недостатки. Ее тяжелее испытывать и анализировать.
Это ухудшает положение. Увеличение числа недостатков безопасности пагубно влияет на защиту: безопасность всей системы зависит от прочности ее самого слабого звена. Один-единственный недостаток может свести на нет защиту всей системы.
Реальные системы не показывают никаких признаков уменьшения сложности. Фактически они становятся более громоздкими все быстрее и быстрее. Microsoft Windows – пример такой тенденции. Windows 3.1, выпущенная в 1992 году, имеет 3 миллиона строк кода. В 1998 году Windows NT 5.0 насчитывала уже 20 миллионов строк кода, а в 1999 году она была переименована в Windows 2000 и содержала в среднем от 35 до 60 миллионов строк кода. Сравнительные данные приведены в табл. 23.1.
Windows 3.1 (1992) – 3 млн
Windows NT (1992) – 4 млн
Windows 95 (1995) – 15 млн
Windows NT 4.0 (1996) – 16,5 млн
Windows 98 (1998) – 18 млн
Windows 2000 (2000) – 35-60 млн (приблизительно)
Windows 2000 ошеломляет своим размером, и будет иметь больше изъянов защиты, чем Windows NT 4.0 и Windows 98 вместе взятые. В свое оправдание Microsoft утверждала, что нужно потратить 500 человеко-лет, чтобы сделать Windows 2000 безопасной. Я привел эти цифры только для того, чтобы продемонстрировать, насколько неадекватна эта оценка[65] .
Вы также можете видеть, что сложность увеличивается, по количеству системных вызовов. Версия UNIX 1971 года имела 33 вызова. В начале 1990-х их количество в операционных системах достигало уже 150. Windows NT 4.0 SP3 имеет 3433. Количество системных вызовов для различных операционных систем представлено в табл. 23.2.
Вначале брандмауэры имели дело только с FTP (протоколом передачи файлов), протоколами Telnet, SMTP, NNTP и службой DNS. И это все. Современные брандмауэры должны взаимодействовать с сотнями протоколов и с запутанным набором правил доступа к сети. Некоторые новые протоколы разработаны подобно HTTP, чтобы они могли «работать с брандмауэром» (то есть обходить его). И пользователи, устанавливающие автоматическую связь, могут не беспокоиться о брандмауэре; теперь для этой цели существуют широкополосные аппаратно-программные средства с DSL и кабельными модемами. Хуже того, существует доступное программное обеспечение, позволяющее пользователям домашних компьютеров представлять себя в качестве веб-серверов. Больше особенностей, больше сложности, меньше надежности.
UNIX 1ed (1971) – 33
UNIX 2ed (1979) – 47
SunOS 4.1 (1989) – 171
4.3 BSD Net 2 (1991) – 136
SunOS 4.5 (1992) – 219
HP UX 9.05 (1994) – 163
Line 1.2 (1996) – 211
SunOS 5.6 (1997) – 190
Linux 2.0 (1998) – 229
Windows NT 4.0 SP3 (1999) – 3 433
Сертифицированный открытый ключ в Х.509 версии 1 был определен на 20 строках ASN.1. Сертификат Х.509 версии 3 занимает приблизительно 600 строк. Сертификат SET – 3000 строк.
Полный стандарт SET занимает 254 страницы. И это только формальная спецификация протокола; есть еще руководство для программиста на 619 страницах и бизнес-описание на 72 страницах. По различным причинам SET никогда не будет широко использоваться, но в любом случае я полагаю, что никто не способен пробраться через все эти лабиринты, не наделав ошибок. Ошибки в работе программного