эволюции жизни на Земле…
Можно надеяться, что в ближайшем будущем эта увлекательная загадка космической физики будет решена методами рентгеновской, радио- и оптической астрономии [19] .
<> Частота вспышек сверхновых по соседству с данной звездой может заметно увеличиться, если звезда проходит через спиральный рукав Галактики. Спиральные рукава представляют собой области повышенной концентрации звезд и межзвездной среды. Они вращаются вокруг центра Галактики с постоянной угловой скоростью, не зависящей от расстояния до него. В то же время угловая скорость орбитального движения звезд в Галактике меняется
Солнце, так же как и другие звезды, находящиеся вблизи коротационной окружности и расположенные вне спиральных рукавов, относительно более свободно от катастрофического воздействия вспышек сверхновых. Л.С. Марочник и Л.М. Мухин выдвинули гипотезу, что коротационная окружность может быть своего рода «поясом жизни» в нашей и других галактиках, в котором наиболее вероятно встретить обитаемые, планеты, похожие на нашу Землю <>.
6. Об эволюции галактик
В гл. 4 рассматривался вопрос об эволюции звезд. Там было рассказано, в частности, что красные гиганты «сбрасывают» свои наружные оболочки, постепенно рассеивающиеся в межзвездном пространстве. Остается очень плотная горячая звезда, которая, остывая, становится сначала белым, а в конце концов – «черным» карликом. Все же в процессе эволюции звезда «возвращает» в межзвездное пространство значительную часть своей массы. Из этого газа будут образовываться более молодые звезды, которые в свою очередь также будут эволюционировать описанным образом. Следует еще раз подчеркнуть, что за время существования Галактики только сравнительно массивные звезды успели пройти весь свой эволюционный путь.
При кругообороте вещества в Галактике (по схеме «межзвездный газ → → звезды → звезды + межзвездный газ») значительная часть его остается в звездном состоянии в недрах «мертвых» белых карликов, нейтронных звезд и, возможно, черных дыр. Кроме того, из-за ограниченности возраста Галактики звезды, образовавшиеся даже в самую раннюю эпоху ее существования и имеющие массу меньше солнечной, еще не успели «сойти» с главной последовательности. Следовательно, они даже «частично» не успели вернуть в межзвездное пространство затраченное на их образование вещество. Из сказанного следует, что количество межзвездной среды в Галактике должно по мере ее развития убывать. Это важный вывод о направлении развития нашей Галактики. Та же тенденция в развитии должна быть и у остальных звездных систем.
В процессе кругооборота межзвездного газа непрерывно меняется его химический состав – он «обогащается» гелием и тяжелыми элементами. Прежде чем вернуться в межзвездную среду, газ длительное время находился в недрах звезд при достаточно высоких температуре и давлении. В нем происходили термоядерные реакции водородные и гелиевые. По этой причине химический состав его медленно менялся: водород постепенно «выгорал», количество гелия росло, возрастало также количество тяжелых элементов. Последние будут образовываться из-за реакции 34He → 12C, 12C + 4He → 16O и дальнейших реакций 12C и 16O с протонами и нейтронами. При таких реакциях будут преимущественно образовываться изотопы 13C и 17O.
Однако необходимо подчеркнуть, что самые тяжелые элементы этим способом «постепенного наращивания» образоваться не могут. Дело в том, что по мере такого «роста» ядер путем присоединения к ним новых нуклонов они с неизбежностью должны стать неустойчивыми ядрами радиоактивных изотопов некоторых элементов. Эти ядра распадутся до того, как к ним будет присоединен очередной нуклон.
Тем самым дальнейший процесс «утяжеления» ядра путем последовательного присоединения нуклонов будет остановлен.
Где же могут образовываться сверхтяжелые элементы? По современным представлениям «тиглем», в котором «варятся» эти элементы, могут быть вспышки сверхновых. По-видимому, при взрыве такой звезды происходят цепные реакции, сопровождающиеся образованием весьма большого количества нейтронов. Не исключено, что столь большое количество нейтронов обеспечит последующий захват ядрами двух и более нейтронов, так что промежуточные ядра не успевают распасться. После того как такие ядра быстро захватят очередной нейтрон, они станут устойчивыми, и дальнейший рост их будет уже идти без помех. Так могут образовываться элементы вплоть до трансурановых.
В результате вспышек сверхновых в межзвездное пространство непрерывно поступают тяжелые и сверхтяжелые элементы, которые постепенно перемешиваются с межзвездным газом. Мы видели, что сверхновые II типа – это молодые массивные звезды. Так как скорость образования таких звезд из межзвездной среды сильно зависит от плотности последней (имеются некоторые основания полагать, что она пропорциональна кубу плотности), то мы приходим к следующему интересному выводу.
Раньше, когда в Галактике содержание межзвездного газа было значительно больше, чем сейчас, и скорость процесса образования звезд из него была много выше современной, сверхновые звезды вспыхивали гораздо чаще. Специально выполненные расчеты показывают, что когда возраст Галактики был меньше 1 млрд лет, частота вспышек сверхновых была примерно в 100 раз больше, чем сейчас.
Учитывая это обстоятельство, можно сделать вывод, что за всю историю развития Галактики в ней вспыхнуло примерно 1 млрд сверхновых звезд. Этого количества как будто бы достаточно для объяснения наблюдаемого содержания тяжелых и сверхтяжелых элементов в межзвездном газе и образовавшихся из него в разное время звезд «второго поколения». В то же время звезды, образовавшиеся в эпоху формирования Галактики (это субкарлики и звезды, входящие в состав шаровых скоплений, массы которых меньше одной солнечной), сохранили, по крайней мере в своих наружных слоях, «первоначальный» химический состав межзвездной среды, из которой они образовались. И действительно, у таких звезд «первого поколения» относительное содержание тяжелых элементов в десятки раз меньше, чем у Солнца, которое является звездой «второго поколения». Таким образом, наблюдаемые характерные различия в химическом составе звезд главной последовательности и субкарликов, о которых шла речь в гл. 2, находят естественное объяснение в рамках общей картины непрерывного обогащения вещества Галактики тяжелыми элементами.
До сих пор речь шла преимущественно о нашей звездной системе Галактике.
Общие сведения о нашей Галактике, а также о других галактиках уже излагались в первой главе. Здесь мы остановимся на морфологических различиях между галактиками. Подобно тому как была в свое время разработана классификация звезд, основывающаяся на их спектрах и светимостях и нашедшая свое выражение в знаменитой диаграмме Герцшпрунга – Рессела (см. рис. 15–17) был классифицирован и мир галактик. Известно, что классификация – это первый шаг к познанию закономерностей природы. Вспомним, например, Линнеевскую классификацию животного и растительного мира. Последующее развитие науки приводит к более глубокому пониманию чисто эмпирической классификации. Например, только спустя ~ 40 лет был правильно понят эволюционный смысл диаграммы Герцшпрунга – Рессела.
Общепринятая классификация галактик была предложена великим американским астрономом Хабблом еще в 20-х годах нашего столетия. Он же немного позже открыл знаменитое «красное смещение» в спектрах галактик (см. гл. 1), вытекающее из развитой несколькими годами раньше космологической теории выдающегося советского математика А.А. Фридмана. Таким образом, не будет преувеличением сказать, что