жизнедеятельности используют абсолютно одинаковый генетический код!
Как превращается закодированная в виде последовательности азотистых оснований в ДНК генетическая информация в строго чередующуюся последовательность биохимических процессов – это уже проблема чисто биологическая. Ее сколько-нибудь подробное рассмотрение выходит за рамки нашей книги [37].
<> Интересно отметить недавнее открытие, что текст в ДНК подобен мозаике, на которой смысловые куски отделены друг от друга «бессмысленными», не несущими информации фрагментами. Когда с ДНК снимается копия в виде информационной РНК, лишние кусочки вырезаются. Зачем природе нужна мозаичность генетического текста, как она возникла – пока неизвестно <>.
Мы только кратко обрисуем основные узлы этой великолепно работающей по программному устройству сложнейшей фабрики, по сравнению с которой наши автоматизированные, самые передовые предприятия кажутся неуклюжими и даже «старомодными». В процессе превращения закодированной в ДНК информации в строго определенную последовательность биохимических процессов решающая роль принадлежит рибонуклеиновым кислотам (РНК), отличающимся от ДНК по составу сахаров и одному азотистому основанию. Молекулярная масса РНК ~ 106, т.е. на порядок меньше, чем у гигантской молекулы ДНК. Синтез белков происходит в особых областях клетки, так называемых «рибосомах», которые можно назвать «фабриками белка». Существуют три типа РНК: высокомолекулярная РНК, локализованная в рибосомах, информационная РНК, образующаяся в ядре клетки «под контролем» ДНК и «транспортная», сравнительно низкополярная (молекулярная масса А 20000) РНК. Синтезируемая в ядре клетки информационная РНК полностью повторяет в своей структуре последовательность азотистых оснований ДНК, участвующей в ее синтезе. Проще говоря, генетический код «переписывается» с молекулы ДНК на молекулу информационной РНК. Эти молекулы затем из ядра клетки поступают в рибосомы и передают туда информацию о последовательности и характере синтеза белка. Перенос и присоединение отдельных аминокислот к месту синтеза осуществляется транспортной РНК. Присоединившаяся к этой молекуле аминокислота доставляется к строящейся молекуле белка и точно присоединяется к нужному участку. При таком присоединении «фишками» является последовательность азотистых оснований, определяющая генетический код. Идет самая настоящая программированная сборка сложнейшей конструкции!
Это, конечно, очень грубая и схематичная картина работы внутриклеточной фабрики белков. Действительность, как всегда, гораздо сложнее и богаче. Например, в клетке имеется по крайней мере 20 типов транспортной РНК, соответствующих числу аминокислот. Все же эта грубая схема дает некоторое представление о работе сложнейшей автоматической «фабрики жизни».
Поразительное свойство «тождественного воспроизводства» при помощи такого кибернетического устройства, как ДНК, – несомненно, существенный атрибут жизни. В то же время чрезвычайно важно следующее обстоятельство.
Под влиянием внешних факторов (например, жесткой радиации) могут происходить отдельные нарушения в системе кода наследственности. Такие нарушения будут приводить к появлению у потомков совершенно новых признаков, которые будут передаваться дальше по наследству. Эти явления называются «мутациями».
Не все мутации «полезны» для данного вида. Дарвиновский естественный отбор со временем производит очень жесткую селекцию. В результате остаются («выживают») те организмы, у которых мутации оказались полезными, нужными данному виду в его борьбе за существование. Этот процесс, согласно современному дарвинизму, и является движущей силой эволюции живых существ на Земле.
Очевидно, что без широкого применения результатов и идей современной генетики – «генетики на молекулярном уровне» – нельзя решить вопрос о происхождении жизни на Земле и на других планетах. Существенным недостатком старых гипотез о возникновении жизни на Земле, и, в частности, гипотезы академика А.И. Опарина, является то, что они не опираются на современную молекулярную биологию. Впрочем, это вполне естественно, так как механизм передачи наследственных признаков и, в частности роль ДНК, стал в известной степени ясным только сравнительно недавно.
Разумеется, мы не отрицаем большую роль старых гипотез в анализе тех предварительных химических процессов, на основе которых впоследствии возникло живое вещество. Например, для возникновения жизни большое значение может иметь концентрация сложных молекул в коацерватных каплях. Но на коренные вопросы, что такое жизнь и как она возникла, эти гипотезы ответа не дают.
Вопрос об определении понятия «жизнь» стоит очень остро, когда мы обсуждаем возможность жизни на других планетных системах, что является главным предметом нашей книги. На это обстоятельство особенное внимание обращал академик А.Н. Колмогоров – выдающийся математик и крупнейший специалист по кибернетике. Он подчеркивал, что биологические науки до последнего времени занимались исследованием живых существ, населяющих Землю и имеющих общую историю возникновения и развития. Естественно, что понятие «жизнь» отождествлялось при этом с конкретным ее воплощением в конкретных условиях нашей планеты. Но в наш век астронавтики открывается принципиальная возможность обнаружить в Космосе такие формы движения материи, которые обладают практически всеми атрибутами живых, а может быть, даже мыслящих существ. Однако мы ничего не можем заранее сказать о конкретных проявлениях этих форм движения материи. Поэтому сейчас возникает настоятельная потребность дать такое определение понятия «жизнь», которое не было бы связано с гипотезами о конкретных физических процессах, лежащих в ее основе. Следовательно, возникает потребность в чисто функциональном определении понятия «жизнь».
Эта задача далеко не простая, и вполне удовлетворительного функционального определения основного понятия «жизни» пока не существует. Однако первые, и притом, как нам представляется, достаточно успешные, шаги в этом направлении уже сделаны. Мы имеем в виду исследования А.А. Ляпунова, на основных идеях которого мы сейчас остановимся [38].
При изучении процессов, лежащих в основе жизнедеятельности всех организмов, от простейших до самых сложных, А.А. Ляпунов исходит из представлений кибернетики. Внимательный анализ показывает, что любое проявление жизни можно перевести на язык науки об управляющих процессах. Характерной особенностью управляющих процессов является то, что передача по определенным каналам небольших количеств энергии или вещества влечет за собой действия, заключающиеся в преобразовании значительно больших количеств энергии или вещества. Но кибернетика как раз и занимается изучением процессов управления и строением управляющих систем. Поэтому вполне естественно и даже необходимо при анализе процессов жизнедеятельности исходить из представления кибернетики.
Заметим еще, что такие биологические понятия, как наследственность, раздражимость и т.д., представляют собой не что иное, как конкретизацию таких общих кибернетических понятий, как накопление и хранение информации, управляющая система, обратная связь, канал связи и др.
А.А. Ляпунов считает, что управление, понимаемое в широком, кибернетическом смысле, является самым характерным свойством жизни безотносительно к ее конкретным формам. Тем самым он делает попытку дать функциональное определение понятия «жизнь».
Согласно этой концепции, «живое вещество» определяется следующим образом. Состояние всякого вещества описывается набором целого ряда физико-химических характеристик: массой, химическим составом, энергией, электрическими и магнитными свойствами и др. Вообще говоря, эти характристики будут с течением времени меняться. Вещества, у которых усредненные за подходящий интервал времени значения характеристик меняются мало по сравнению с другими веществами, обладающими примерно такими же значениями характеристик, Ляпунов называет «относительно устойчивыми». Причиной устойчивости могут быть либо особенно благоприятные внешние условия (например, постоянная температура внешней среды), либо внутренние реакции вещества на внешние воздействия, направленные на сохранение его состояния. Реакции такого типа Ляпунов называет «сохраняющими». Именно последний тип устойчивости и лежит в основе жизнедеятельности всех организмов. В самом деле, для жизни характерна огромная «приспособляемость», «адаптация» к внешним условиям и их изменениям. В ряде случаев живые организмы активно преобразуют окружающую их среду, создавая подходящие условия для своей жизнедеятельности. Так, например, отдельные виды микроорганизмов могут «локально» повышать температуру окружающей их среды.
Вся эта «адаптация» жизни достигается живой материей путем огромного количества сохраняющих