Как? При гашении извести выделяется много тепла.
Первое непременное условие всех до единой химических реакций: они идут с выделением или поглощением тепловой энергии. Иногда тепла выделяется так много, что это легко обнаружить на ощупь. Если мало, то помогают специальные методы измерения.
Страшная это штука — взрыв. Страшная потому, что взрыв происходит мгновенно. В считанные доли секунды.
А что такое взрыв? Самая обыкновенная химическая реакция, сопровождающаяся выделением большого количества газов. Пример моментально протекающего химического процесса. Скажем, горение пороха в патронной гильзе. Или взрыв динамита.
Взрыв — все-таки своего рода крайность. Большинство реакций проходят в более или менее продолжительные промежутки времени.

Течение многих реакций вроде бы и не удается обнаружить.
…В стеклянном сосуде смешаны два газа — водород и кислород, составные части воды. Сосуд может стоять сколько угодно: месяц, год, сто лет. Однако на поверхности стекла не видно ни единой капельки влаги. Похоже, что водород вовсе не соединяется с кислородом. Да нет, соединяется. Только чрезвычайно медленно. Чтобы на донышке сосуда образовалось чуть заметное количество воды, должны пройти тысячелетия.
В чем дело? В температуре. При комнатной температуре (15–20 градусов) водород и кислород взаимодействуют, но чрезвычайно медленно. Однако стоит нагреть сосуд, как его стенки запотевают: верный признак протекающей реакции. При 550 градусах сосуд разлетится на мелкие осколки: при такой температуре водород и кислород реагируют со взрывом.
Почему же тепло так ускоряет течение этого химического процесса, заставляет черепаху двигаться со скоростью молнии?
Водород и кислород в свободном виде существуют в форме молекул Н2 и О2. Чтобы соединиться в молекулу воды, они должны столкнуться. Чем чаще такие столкновения, тем с большей вероятностью образуется молекула воды. При комнатных температуре и давлении каждая молекула водорода сталкивается с молекулой кислорода… более десяти миллиардов раз в секунду. Если бы любое столкновение приводило к химическому взаимодействию, реакция прошла бы быстрее взрыва: за одну десятимиллиардную долю секунды!
Но мы не заметим в нашем сосуде никаких изменений ни сегодня, ни завтра, ни через десять лет. В обычных условиях очень редкое столкновение приводит к химической реакции. И секрет в том, что сталкиваются молекулы водорода и кислорода.
Прежде чем вступить в реакцию, они должны распасться на атомы. Точнее говоря, валентные связи между атомами кислорода и атомами водорода в их молекулах должны ослабнуть. Ослабнуть настолько, чтобы не препятствовать объединению разнородных атомов водорода и кислорода. Температура и играет роль кнута, подстегивающего реакцию. Она во много раз увеличивает число столкновений. Она заставляет молекулы сильнее колебаться, и это ослабляет валентные связи. А когда водород и кислород встречаются на атомном уровне, то реагируют мгновенно.
Вообразим себе такую картину.
Не успели мы смешать водород с кислородом, как моментально появились пары воды. Едва железная пластинка пришла в соприкосновение с воздухом, как тут же покрылась рыжеватыми разводами ржавчины, а минуло еще немного времени, и твердый блестящий металл превратился в рыхлый порошок окисла.
Все до единой химические реакции в мире стали протекать с завидной скоростью. Все молекулы начали реагировать друг с другом независимо от того, какой энергией они обладают. Каждое столкновение двух молекул приводило к вступлению их в химический союз.
На Земле исчезли металлы — они окислились. Сложные органические вещества, в том числе и те, что входят в состав живой клетки, превратились в простые, но более устойчивые соединения.
Странный мир получился бы тогда. Мир без жизни, мир без химии, фантастический мир очень устойчивых соединений, не имеющих никакого желания вступать в химические взаимодействия.
К счастью, такой кошмар нам не грозит. На пути всеобщей «химической катастрофы» стоит чудесный барьер.
Этот барьер представляет собой так называемую энергию активации. Чтобы молекулы смогли вступить в химическую реакцию, их энергии должны быть не меньше соответствующих величин энергии активации.
Даже при обычной температуре, например, среди молекул водорода и кислорода отыщутся такие, у которых энергия равна энергии активации или больше ее. Потому-то образование воды идет в этих условиях, хотя и чрезвычайно медленно. Просто слишком мало достаточно энергичных молекул. А высокая температура приводит к тому, что активационного барьера достигают многие молекулы, и число актов химического взаимодействия водорода и кислорода возрастает в огромной степени.
У медицины есть свой символ, дошедший до нас из очень отдаленных времен. И сейчас, скажем, на погонах военных врачей можно увидеть змею, обвившуюся вокруг чаши.
Оказывается, нечто подобное есть и у химии. Это змея, кусающая свой хвост.
У древних народов существовал культ всевозможных мистических знаков, смысл которых затрудняются объяснить современные историки.
Мистика мистикой, а в «химическую змею» вложено вполне определенное содержание. Она символизирует обратимую химическую реакцию.
Два атома водорода и атом кислорода, соединяясь, дают молекулу воды. Одновременно другая молекула воды распадается на составные части. В одно и то же мгновение протекают две противоположные реакции: образование воды (прямая реакция) и ее распад (обратная реакция). Химик, желая отобразить на бумаге эти два противоречивых процесса, напишет: 2H2 + O22H2O. Стрелочка с острием направо показывает ход прямой реакции, с острием налево — направление реакции обратной.

В принципе все до единой химические реакции обратимы.
Сначала преобладает прямая реакция. Чаша весов склоняется в сторону образования молекул воды. Потом нарастает реакция противоположная. И наконец, наступает момент, когда число образующихся молекул равно числу распадающихся. Слева ли направо, справа ли налево — реакции идут с одинаковой скоростью.
Химик скажет: наступило равновесие.
Рано или поздно оно устанавливается в любой химической реакции. Иногда мгновенно. Иногда через много дней. Раз на раз не приходится.
В своей практической деятельности химия преследует две цели. Во-первых, она стремится достичь того, чтобы химический процесс дошел до конца, чтобы все исходные продукты прореагировали между собой. Во-вторых, она ставит задачу добиться максимального выхода нужного продукта. Для осуществления этих целей необходимо как можно дольше оттянуть момент наступления химического равновесия. Прямая