веществ.

Химики получают многие металлы в очень чистом состоянии, беря в помощники комплексы. Их используют как ценные красители, ими умягчают воду. Словом, они вездесущи — комплексные соединения.

Сюрприз простого соединения

Освоить фотографию в наш век — дело более чем нехитрое. Оно, пожалуй, под силу и октябренку. Пусть он не будет знать всех тайн фотографического процесса. (Между нами говоря, кое-что неясно даже специалистам.) Но снимать и проявлять — тут требуется лишь небольшая практика да несколько добрых советов взрослых.

А поэтому мы не будем расписывать в подробностях, что нужно делать фотографу.

Он, например, хорошо знает, что иногда фотографии покрываются бурыми пятнами. Особенно когда они лежат на свету и долго хранятся. «Стало быть, — скажет фотограф, — в процессе проявления бумаги (или пластинки) изображение недозакрепилось».

По-научному это значит: пластинку или фотобумагу недостаточно держали в фиксирующем растворе.

Зачем нужен фиксаж? И на этот вопрос легко ответит всякий, кто хоть немного увлекался фото.

Чтобы удалить с поверхности пленки остатки бромистого серебра, которое не разложилось при действии света.

Фиксажей изобретено немало. Но самый дешевый, самый популярный из них — гипосульфит. Химики называют его тиосульфатом натрия.

Но сначала о сульфате. Он известен давным давно, и открыл его немецкий химик Иоганн Глаубер. Поэтому сульфат натрия именуют еще и глауберовой солью. Его формула Na2SO4 · 10H2O.

Химики любят изображать соединения в виде структурных формул. Безводный сульфат натрия они нарисуют так:

И даже новичок в химии, взглянув на формулу, легко увидит: сера здесь положительно шестивалентна, кислород — отрицательно двухвалентен.

Тиосульфат построен почти так же. За исключением одной детали — вместо атома кислорода стоит атом серы:

 или так:

Просто? Конечно. Но до чего же все-таки любопытное соединение этот тиосульфат! Оно содержит два атома серы разной валентности. Один несет заряд 6+, другой 2–. Не так уж часто сталкиваются химики с подобным явлением.

Даже в самом обыденном нередко кроется необычное.

Чего не знал Гемфри Дэви

Список научных трудов знаменитого английского химика Гемфри Дэви чрезвычайно обширен.

Он был не только талантливым ученым, но и весьма удачливым исследователем. За какую бы проблему ни брался Дэви, он почти всегда успешно ее разрешал. Он получил немало новых химических соединений. Разработал несколько новых методов исследования. Дэви, наконец, открыл четыре элемента — калий и натрий, магний и барий.

Среди его работ есть небольшое исследование. В нем сообщается о приготовлении простого химического соединения — гидрата хлора. Здесь к молекуле хлора присоединялось шесть молекул воды: Cl2 · 6H2O.

Дэви тщательно изучил свойства этого вещества. Но так и не узнал, что получил соединение совершенно нового типа. Соединение, в котором отсутствует химическая связь.

В этом убедились химики двадцатого столетия. Они пытались объяснить существование гидрата хлора с помощью современных представлений о валентности. И безуспешно: вещество оказалось крепким орешком.

И далеко не единственным.

Десятилетиями химики искали ответа на вопрос: так ли уж безнадежно инертны инертные газы или все-таки их можно заставить вступить в химическое взаимодействие? Мы с вами уже знаем, чем все кончилось. Но пока дело решалось, ученым удалось приготовить несколько гидратов аргона, криптона, ксенона и радона.

И в них обычная химическая связь отсутствовала. Между тем многие из них сравнительно прочные вещества.

Новую загадку загадало химикам простое органическое соединение, называемое мочевиной. Она охотно объединялась со многими углеводородами и спиртами. Эта странная «дружба» вызывала удивление: какие силы влекут друг к другу молекулу мочевины и спирта? Какие угодно, только не химические…

Как бы там ни было, новый класс соединений — веществ без химической связи — разрастался с пугающей быстротой.

Но оказалось, что в этом нет ничего сверхъестественного.

Две молекулы, вступающие в союз, неравноправны. Одна вступает как хозяин, другая же «приходит в гости».

Молекулы-хозяева образуют кристаллическую решетку. В решетке всегда есть пустоты, полости, не занятые атомами. В такие пустоты и входят молекулы-гости. Однако гостеприимство в данном случае довольно оригинальное. Пришельцы надолго засиживаются в гостях у хозяев, поскольку просто так не могут покинуть полости кристаллической решетки.

Так, молекулы газов хлора, аргона, криптона и других попадают, как в западню, в пустоты кристаллической структуры воды.

Химики называют теперь эти и ряд других веществ без химической связи между разными молекулами клатратнымй (или клеточными) соединениями включения.

26, 28, или нечто совсем удивительное

Называются эти вещества катенанами. От латинского слова «катена», что означает цепь.

Ну что ж: цепь так цепь. Кого этим удивишь? В словаре химика-органика понятие «цепь» употребляется едва ли не чаще прочих терминов.

Однако цепь цепи рознь. Мы с вами уже имели возможность убедиться, что всякие бывают цепочки — и линейные и разветвленные, подчас весьма хитроумные комбинации цепочек.

Но вдумайтесь: цепь в органических соединениях — понятие образное, но не очень-то строгое. Ведь в обиходе под цепью понимают нечто иное. Ее звенья не скреплены жесткой механической связью, а свободно входят одно в другое.

В сложных органических соединениях циклы как бы «припаяны» друг к другу. Например, три бензольных кольца в антрацене. Вроде бы цепочка из циклов. Цепочка, да не совсем…

Вот химики и стали ломать голову: а нельзя ли соединить отдельные циклы, как два звена сочленяются в обычной цепи? Скажем, так:

Словом, чтобы две циклические молекулы соединялись без участия химической связи, так сказать, чисто механически.

Эта заманчивая идея много лет вызревала в умах ученых. На их стороне была теория. Она не ставила

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату