233

это рассуждение… мы находим весьма интересным, но в то же время довольно трудным для понимания (франц.). — 99.

234

Теперь говорят «упорядоченность». — 100.

235

раньше и потом по порядку (греч.). — 100.

236

упорядоченный (нем.). — 101.

237

Такие множества называются n–кратно упорядоченными. См.: Кантор Г. Труды… С. 256—258. — 101.

238

Это не совсем верно. Цветность точки сама определяется тремя упорядоченными признаками. Этот и другие приводимые здесь примеры заимствованы у Кантора (см.: Кантор Г. Труды… С. 306—308). — 101.

239

Жюль Таннери (1848—1910), французский математик, основные работы которого относятся к теории функций, был одним из первых пропагандистов теоретико–множественного направления. — 102.

240

J. Tannery. Dc ГіпГіпіс mall^matique. Revue gcndralc des Sciences purcs ct appliquccs. Т. ?ІІЇ, 1897, pp. 129–140.

241

G. Canlor. Miltheilungen zur Lehre vom Transfinilen, VIII. Zcitschrift f. Philosophic und philosophische Krilik. 1889. Bd. 91.

242

т. е. бесконечных. — 103.

243

Тут речь идет только об установлении формального соответствия между тонами и цветами; вопрос же о реальном сродстве тех и других, основывающемся на внутренней связи их, остается в стороне.

244

Или треугольника Паскаля. Этот и другие примеры заимствованы у Кантора (см. Кантор Г. Труды… С. 289—299). — 104.

245

фактически (лат.). Эта конструкция принадлежит Галилею.

246

Теперь говорят «счетных». — 105.

247

Единое в разном… единое, внутренне способное ко многому (лат.). — 107.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату