Я рассмотрел лишь начало ряда целых чисел, поскольку, это пункт перемычки между языком и реальностью. Язык образован при помощи тех же самых объединяющих черт, которые я использовал для объяснения единицы и «плюс единицы». Но в языке эта черта не тождественна объединяющей черте, поскольку в языке мы имеем собрание различительных черт. Иначе говоря, мы можем сказать, что язык образован собранием означающих — например, 6а, та, па и т. д. — то есть конечным множеством. Каждое означающее способно поддерживать тот же самый процесс по отношению к субъекту; весьма вероятно, что процесс целых чисел является лишь частным случаем этого отношения между означающими. Определение этого собрания означающих заключается в том, что они задают то, что я называю Другим. Различие, предложенное существованием языка, заключено в том, что каждое означающее (в противоположность объединяющей черте целых чисел) в большинстве случаев не тождественно самому себе — именно потому, что мы имеем собрание означающих, в котором каждое отдельное означающее может обозначать, а может и не обозначать само себя. Это хорошо известно, и в этом состоит принцип парадокса Рассела. Если вы возьмете множество всех элементов, которые не являются членами самих себя,

х ∈ х

то множество, которое вы построите из таких элементов, приведет к парадоксу, который, как вам известно, влечет противоречие26. Если говорить просто, то это означает, что в универсуме дискурса ничто не содержит всё27, и здесь вы снова обнаруживаете зияние, образующее субъекта. Субъект — это введение потери в реальность, но ничто не может ввести эту потерю, поскольку по своему статусу реальность максимально полна. Понятие потери — это следствие существования черты, которая является тем, что при внедрении определяемой вами буквы размещает — скажем так, а1, а2, а3 — места же являются пространствами для нехватки. [The notion of the loss is the effect afforded by the instance of the trait which is what, with the intervention of the letter you determine, places — say a1, a2, a3 — and the places are spaces, for a lack.] (Лакан 1970, с. 193)

Отметим сразу, что с того момента, как Лакан начинает «говорить просто», все становится совершенно неясным. Но самое главное, он не дает никакого обоснования для проведения возможной связи между парадоксами, принадлежащими основаниям математики, и «зиянием, образующим субъекта» в психоанализе. Не наводит ли это на мысль, что дело, скорее, в том, чтобы своей поверхностной эрудицией произвести впечатление на читателей?

Можно сделать заключение, что этот текст прекрасно иллюстрирует злоупотребления 2 и 3 нашего списка: Лакан демонстрирует неспециалистам свои познания в математической логике, но с математической точки зрения его изложение не носит ни педагогического, ни оригинального характера, а связь с психоанализом не подкреплена никаким обоснованием.

В других текстах даже как будто бы чисто «математическое» содержание лишено всякого смысла. Например, в статье, написанной в 1972 году, Лакан высказывает свою знаменитую максиму — «не существует сексуального отношения» — и выражает эту очевидную истину в своих прославленных «формулах сексуации»:

Все дальнейшее развитие можно удержать вокруг того, что я говорю о логической корреляции двух формул, которые, если их записать математически как · Fx и ∃x · Фx` выражает следующее28: первая — для всякого х удовлетворяется свойство Фх`, что можно отметить при помощи знака Т, служащего для обозначения значения истины. Если перевести все это на аналитический язык, практика которого как раз и состоит в создании смысла, то это «будет значить» то, что всякий субъект как таковой, ведь в этом-то и заключена ставка этого языка, вписывается в фаллическую функцию, чтобы ответить на отсутствие сексуального отношения (практика создания смысла или сути означает отсылку к этому отсутствию); вторая — в качестве исключения есть вариант, хорошо известный в математике (аргумент х = 0 в экспоненциальной функции 1/х), когда существует х, для которого функция Фх не выполняется, то есть она не функционирует и просто исключается29.

Исходя из этого пункта, я делаю конъюнкцию всего универсального, более модифицированного, чем можно было бы подумать по квантору «для всякого», и квантора «существует», соединяемого квантификацией с первым, поскольку он неявно отличается от того, что подразумевается в предложении, которое Аристотель назвал частным. Я делаю конъюнкцию исходя из того, что рассматриваемое «существует», создавая предел для «для всякого», является тем, что его утверждает или подтверждает (в этом-то поговорка и упрекает противоречивость Аристотеля). […]

То, что я задаю существование субъекта в отрицании пропозициональной функции Fx, подразумевает, что оно записывается квантором, при помощи которого эта функция оказывается оторванной от обладания каким бы то ни было значением истинности в этом пункте, что не означает ошибки, когда ложное понимается лишь как термин falsus в университетской клинике, что я уже подчеркивал.

В классической логике, что бы там о ней не думать, ложное понимается лишь как истина обратного, оно указывает на это обратное. Поэтому справедливо будет записать нашу формулу так, как я это делаю: Ех · Фх`. […]

От двух вариантов зависит то, будет ли субъект предлагать здесь, чтобы его называли женщиной. Вот они:

Ех` · Фх`; и Ах · Фx`.

Такая запись не практикуется в математике30. В ней нельзя отрицать так, как это делает черта над квантором, отрицать то, что «не существует», тем более нельзя допускать того, чтобы «для всех» относилось к «не для всех».

Однако, именно в этом открывается смысл высказывания того, что, производя в нем конъюнкцию «ни а ни а», которая шумно соединяет полы, создает дополнение к тому, что между ними не отрицалось отношением.

Это не нужно понимать в том смысле, который, сводя наши кванторы к их аристотелевскому прочтению, приравнял бы «не существует» к «ни один» его универсального негативного предложения, и возвратил бы μη ραντεχ, «не все» (которое он, впрочем, смог сформулировать), свидетельствуя о существовании субъекта как отрицании фаллической функции в форме его полагания простой противоположностью двух частных высказываний.

Но вовсе не в этом состоит смысл высказывания, записываемого этими кванторами.

Он в следующем: чтобы ввестись как половина, относящаяся к женщинам, субъект определяется тем, что, поскольку не существует подвеса фаллической функции, о нем могло бы высказать все что угодно, даже то, что рождается безо всякого на то основания. Но это «всё» оказывается вне универсума, который просто-напросто вычитывается из второго квантора как «не всё».

Субъект в той половине, где он определяется отрицаемыми кванторами, относится к тому, что ничто существующее не создает предела функции, что невозможно удостовериться в чем бы то ни было, относящемся к универсуму. Таким образом, если основываться на этой половине, «они», женщины, не «не все», и, следовательно, отсюда же получается, что ни одна из них не является также всей. (Лакан 1973, с. 14–15, 22, курсив в оригинале)

Другие примеры закидывания читателя учеными словами можно найти в другой книге Лакана (1971b): объединение (в математической логике) (с. 206), теорема Стокса (в этом случае Лакан и вовсе теряет всякий стыд) (с. 213). В работе Лакана (1975а) мы также находим: Бурбаки (с. 30–31, 46), кварк (с. 37), Коперник и Кеплер (с. 41–43), инерция, закон группы, математическая формализация (с. 118). А в Лакане (1975с) есть такой пример:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату