switch(chi) {
case 'A': Console.WriteLine('Эта ветвь А — ^асть ' +
'внешнего оператора switch.');
switch(ch2) {
case 'A':
Console.WriteLine('Эта ветвь A — часть ' +
'внутреннего оператора switch');
break; case 'В1: // ...
} // конец внутреннего оператора switch break; case 'В': // ...
Оператор цикла for
Оператор for уже был представлен в главе 2, а здесь он рассматривается более подробно. Вас должны приятно удивить эффективность и гибкость этого оператора. Прежде всего, обратимся к самым основным и традиционным формам оператора for.
Ниже приведена общая форма оператора for для повторного выполнения единственного оператора.
for
А вот как выглядит его форма для повторного выполнения кодового блока:
for
{
где
Цикл for может продолжаться как в положительном, так и в отрицательном направлении, изменяя значение переменной управления циклом на любую величину. В приведенном ниже примере программы выводятся числа; постепенно уменьшающиеся от 100 до -100 на величину 5.
// Выполнение цикла for в отрицательном направлении.
using System;
class DecrFor {
static void Main() { int x;
for(x = 100; x > -100; x -= 5)
Console.WriteLine(x);
}
}
В отношении циклов for следует особо подчеркнуть, что условное выражение всегда проверяется в самом начале цикла. Это означает, что код в цикле может вообще не выполняться, если проверяемое условие с самого начала оказывается ложным. Рассмотрим следующий пример.
for(count=10; count < 5; count++)
x += count; // этот оператор не будет выполняться
Данный цикл вообще не будет выполняться, поскольку первоначальное значение переменной count, которая им управляет, сразу же оказывается больше 5. Это означает, что условное выражение count < 5 оказывается ложным с самого начала, т.е. еще до выполнения первого шага цикла.
Оператор цикла for — наиболее полезный для повторного выполнения операций известное число раз. В следующем примере программы используются два цикла for для выявления простых чисел в пределах от 2 до 20. Если число оказывается непростым, то выводится наибольший его множитель.
// Выяснить, является ли число простым. Если оно // непростое, вывести наибольший его множитель.
using System;
class FindPrimes { static void Main() { int num; int i; int factor; bool isprime;