¹ Сигналы действуют в последовательности согласования (см. ниже).

EPP-порт имеет расширенный набор регистров (табл. 1.5), который занимает в пространстве ввода-вывода 5–8 смежных байт.

Таблица 1.5. Регистры EPP-порта

Имя регистра Смещение Режим R/W Описание
SPP Data Port +0 SPP/EPP W Регистр данных SPP
SPP Status Port +1 SPP/EPP R Регистр состояния SPP
SPP Control Port +2 SPP/EPP W Регистр управления SPP
EPP Address Port +3 EPP R/W Регистр адреса EPP. Чтение или запись в него генерирует связанный цикл чтения или записи адреса EPP
EPP Data Port +4 EPP R/W Регистр данных EPP. Чтение (запись) генерирует связанный цикл чтения (записи) данных EPP
Not Defined +5…+7 EPP N/A В некоторых контроллерах могут использоваться для 16-32-битных операций ввода-вывода

В отличие от программно-управляемых режимов, описанных выше, внешние сигналы EPP-порта для каждого цикла обмена формируются аппаратно по одной операции записи или чтения в регистр порта. На рис. 1.3 приведена диаграмма цикла записи данных, иллюстрирующая внешний цикл обмена, вложенный в цикл записи системной шины процессора (иногда эти циклы называют связанными). Адресный цикл записи отличается от цикла данных только стробом внешнего интерфейса.

Рис. 1.3. Цикл записи данных EPP

Цикл записи данных состоит из следующих фаз.

1. Программа выполняет цикл вывода (IOWR#) в порт 4 (EPP Data Port).

2. Адаптер устанавливает сигнал Write# (низкий уровень), и данные помещаются на выходную шину LPT-порта.

3. При низком уровне Wait# устанавливается строб данных.

4. Порт ждет подтверждения от ПУ (перевода Wait# в высокий уровень).

5. Снимается строб данных — внешний EPP-цикл завершается.

6. Завершается процессорный цикл вывода.

7. ПУ устанавливает низкий уровень Wait#, указывая на возможность начала следующего цикла.

Пример адресного цикла чтения приведен на рис. 1.4. Цикл чтения данных отличается только применением другого стробирующего сигнала.

Рис. 1.4. Адресный цикл чтения EPP

Главной отличительной чертой EPP является выполнение внешней передачи во время одного процессорного цикла ввода-вывода. Это позволяет достигать высоких скоростей обмена (0,5–2 Мбайт/с). ПУ, подключенное к параллельному порту EPP, может работать со скоростью устройства, подключаемого через слот ISA.

Протокол блокированного квитирования (interlocked handshakes) позволяет автоматически настраиваться на скорость обмена, доступную и хосту, и ПУ. ПУ может регулировать длительность всех фаз обмена с помощью всего лишь одного сигнала Wait#. Протокол автоматически подстраивается под длину кабеля — вносимые задержки приведут только к удлинению цикла. Поскольку кабели, соответствующие стандарту IEEE 1284 (см. выше), имеют одинаковые волновые свойства для разных линий, нарушения передачи, связанного с «состязаниями» сигналов, происходить не должно. При подключении сетевых адаптеров или внешних дисков к EPP-порту можно наблюдать непривычное явление: снижение производительности по мере удлинения интерфейсного кабеля.

Естественно, ПУ не должно «подвешивать» процессор на шинном цикле обмена. Это гарантирует механизм тайм-аутов PC, который принудительно завершает любой цикл обмена, длящийся более 15 мкс. В ряде реализаций EPP за тайм-аутом интерфейса следит сам адаптер — если ПУ не отвечает в течение

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату