Микросхемы флэш-памяти с симметричной архитектурой выпускаются и с интерфейсом DRAM (динамической памяти) — с мультиплексированной шиной памяти, стробируемой сигналами RAS# и CAS#. Они предназначены для применения в модулях SIMM или DIMM, устанавливаемых в гнезда для обычной динамической памяти. Таким образом реализуются, например, модули PostScript для лазерных принтеров и любые резидентные программные модули. Эти модули, естественно, не будут определяться системой как основная память — на попытку обычной записи и считывания, предпринимаемую в тесте POST при определении установленной памяти, они ответят весьма своеобразно. Также они не будут восприниматься и как модули дополнительной системы BIOS, поскольку займут неподходящие для этого физические адреса. Использоваться эти модули смогут только с помощью специального драйвера, который «объяснит» чипсету, какому диапазону адресов пространства памяти соответствуют сигналы выборки банков флэш-памяти. Поскольку интерфейс модулей SIMM и DIMM не предполагает сигналов защиты записи, системного сброса и дополнительного питания +12 В, все вопросы, связанные с программированием и защитой, решаются дополнительными элементами, устанавливаемыми на модулях. При использовании 16-битных микросхем такие модули непосредственно не обеспечивают независимую побайтную запись, но она может обеспечиваться программно, маскированием (записью 0FFh) немодифицируемых байт.

Для хранения BIOS появились микросхемы флэш-памяти с интерфейсом LPC, называемые хабами (firmware hub).

Для некоторых сфер применения требуются специальные меры по блокированию изменения информации пользователем. Так, Intel в некоторые микросхемы вводит однократно записываемые регистры OTP (One-Time-Programmable). Один 64-битный регистр содержит уникальный заводской номер, другой может программироваться пользователем (изготовителем устройства) только однажды.

Фирма Intel выпускает микросхемы «Wireless Flash Memory» — за интригующим названием скрывается, конечно же, «нормальный» электрический интерфейс с проводами (wireless — без проводов). Однако они ориентированы на применение в средствах беспроводной связи (сотовые телефоны с доступом к Интернету): питание 1,85 В, наличие регистров OTP для защиты от мошенничества и т.п.

Корпуса, интерфейс и обозначение микросхем флэш-памяти

Микросхемы флэш-памяти упаковывают в корпуса со стандартизованным назначением выводов. Первые микросхемы выпускались в корпусах DIP, что обеспечивало легкость замены микросхем (E)EPROM на флэш-память. Далее в целях миниатюризации перешли к корпусам PLCC, TSOP и TSOP-II. Применение корпусов FBGA (Fine Pitch Ball Grid Array) — матрицы 6×8 шариковых выводов с шагом 0,8 мм — позволяет уменьшить размер корпуса до минимума, требуемого для упаковки кристалла. Для микросхем, используемых в картах SmartMedia, применяют и оригинальную упаковку KGD (Known Good Die).

На рис. 7.20-7.22 приведено расположение выводов распространенных микросхем флэш-памяти (основной вариант цоколевки). Многие микросхемы имеют два варианта цоколевки для корпусов поверхностного монтажа — основной и зеркальный (реверсный). Это позволяет существенно упростить разводку печатных проводников (серпантином) при объединении большого количества микросхем в массивы флэш-памяти.

Рис. 7.20. Расположение выводов микросхем флэш-памяти с 8-битной организацией в корпусах DIP и PLCC: а — DIP-32, б — PLCC-32

Рис. 7.21. Расположение выводов микросхем флэш-памяти с 8-битной организацией в корпусах TSOP: а — TSOP-32, б — TSOP- 40

Рис. 7.22. Расположение выводов микросхем флэш-памяти с 8/16-битной организацией в корпусах TSOP-44: а — TSOP-44, б — TSOP-48, в — TSOP-56

Назначение сигналов микросхем флэш-памяти приведено в табл. 7.23; микросхемы разных изготовителей и моделей могут иметь не все из приведенных управляющих сигналов.

Таблица 7.23. Назначение сигналов микросхем флэш-памяти

Сигнал Назначение
СЕ# Chip Enable — разрешение доступа. Низкий уровень разрешает обращение к микросхеме, высокий уровень переводит микросхему в режим пониженного потребления. Доступ к микросхеме, имеющей два входа (СЕ1# и СЕ2#), возможен при низком уровне на обоих входах
ОЕ# Output Enable — разрешение выходных буферов. Низкий уровень при низком уровне сигнала СЕ# разрешает чтение данных из микросхемы. Подача высокого (12В) напряжения во время подачи команды стирания или программирования позволяет модифицировать и Boot-блок (этот метод используется редко, поскольку требует не-ТТЛ сигнала)
WE# Write Enable — разрешение записи. Низкий уровень при низком уровне сигнала СЕ# разрешает запись и переводит выходные буферы в высокоимпедансное состояние независимо от сигнала ОЕ#. Временные диаграммы шинного цикла записи аналогичны обычной статической памяти, что позволяет подключать флэш-память непосредственно к системной шине процессора. Допустимы оба способа управления — как с помощью сигнала WE# на фоне низкого уровня СЕ#, так и наоборот. Минимальная длительность импульса записи совпадает со временем доступа
DQx Data Input/Output — двунаправленные линии шины данных. Время доступа при чтении отсчитывается от установки действительного адреса или сигнала СЕ# (в зависимости от того, что происходит позднее). Фиксация данных при записи происходит по положительному перепаду WE# или СЕ# в зависимости оттого, что происходит раньше
BYTE# Управляющий сигнал для выбора режима обращения к микросхемам с 8/16 -битной организацией. Они имеют два 8-битных банка, и их ячейки памяти адресуются 16-битными словами. Низкий уровень сигнала BYTE# задает восьмибитный режим обмена по линиям DQ[0:7], при этом линия DQ15/A-1 становится самой младшей линией адреса, переключающей банки, а линии DQ[8:14] переходят в высокоимпедансное состояние
Ах Address — входные линии шины адреса. Линия А9 допускает подачу
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату