ракеты, когда полетный вес максимальный.

Ракета для вывода ОКС на орбиту должна иметь вполне определенный избыток тяги двигателя по сравнению с весом. С одной стороны, избыток тяги должен быть достаточным для подъема ракеты данного веса. Рассуждая теоретически, можно было бы иметь начальную тягу лишь немногим больше стартового веса ракеты. Но тогда время выведения будет очень большим, а это значит, что на преодоление земного притяжения будет затрачено слишком много энергии. Это приведет к перерасходу топлива и уменьшению веса полезной нагрузки. Но, с другой стороны, избыток тяги не должен быть слишком большим, для того чтобы перегрузки, возникающие при ускорении ракеты на подъеме, были в пределах допустимых.

Работы по созданию новых мощных ЖРД ведутся сейчас довольно широко. Известно, например, что американская фирма «Рокетдайн» испытывает ЖРД с тягой около 680 т. Трудности в доводке таких двигателей значительны, а требования к точности и надежности очень высоки.

Но и такой мощный двигатель, установленный на первой ступени ракеты-носителя, не смог бы поднять на орбиту полезный груз более 10–15 т. Где же выход? В применении испытанного способа повышения тяговооруженности ракет, т. е. в использовании на начальных и последних ступенях связок из нескольких ЖРД.

Идея связок возникла в свое время в связи с недостаточной мощностью имевшихся двигателей. Теперь она получила широкое распространение, и появление сверхмощных ЖРД не противоречит этой идее, а увеличивает ее возможности. Правда, у такой схемы есть недостатки. Хотя надежность одного двигателя в связке может быть даже выше надежности одного большого ЖРД, эквивалентного связке по тяге, общая надежность связки из нескольких двигателей может оказаться недостаточной. Система топливопитания связки значительно усложняется. И все-таки это единственный путь создания ракет со стартовым весом 600 т и более. Поэтому в последнее время, как отмечается в американской печати появилась тенденция к унификации жидкостных двигателей, т. е. к сокращению различных типов ЖРД с целью получения максимальной их надежности.

Имея небольшой ассортимент достаточно надежных двигателей разной мощности, можно было бы применять их во всевозможных комбинациях на тех или иных космических аппаратах.

Однако в этом направлении можно пойти и дальше, а именно осуществить унификацию не только двигателей, но и целых ступеней ракетных аппаратов различного целевого назначения, чтобы одни и те же стандартные ступени использовать в соответствующих комбинациях для создания самых разнообразных типов ракет-носителей.

Как считают американские специалисты, помимо увеличения надежности, применение принципа унификации при проектировании носителей даст большой выигрыш от снижения затрат, связанных с разработкой всевозможных космических систем.

В табл. 2 приведены различные проектные варианты использования унифицированных ступеней американской ракеты «Сатурн» и даны соответствующие веса полезных нагрузок для различных задач, начиная от запуска обитаемого спутника Земли и кончая осуществлением мягкой посадки космического аппарата на Луну [35].

Каждая ступень ракеты имеет связку из нескольких жидкостных двигателей, причем на второй и третьей ступенях установлены одинаковые двигатели фирмы «Рокетдайн», а на четвертой и пятой — однотипные двигатели фирмы «Пратт Уитни». Проектные характеристики отдельных ступеней ракеты «Сатурн» приведены в табл. 3.

Улучшенный вариант ракеты «Сатурн» С-1В должен выводить на орбиту высотой 480 км полезную нагрузку около 14 т.

Таблица 2 Таблица 3

Надежность двигателя Н-1 «Рокетдайн» на основании большой серии опытных испытаний оценивается 96,5 %. Надежность связки из восьми таких двигателей, устанавливаемой на первой ступени, значительно меньше и составляет лишь 75 %. При проектировании первой ступени была предусмотрена возможность продолжения полета и при отказе одного или двух двигателей, причем получение расчетной конечной скорости всей ракеты обеспечивается увеличением времени работы верхних ступеней. Фирма «Рокетдайн» стремится повысить надежность первой ступени путем замены связки из восьми двигателей Н-1 одним большим двигателем F-1 тягой 680 т. Конечно, и двигатель F-1 можно использовать в связках. Предполагается, что ракеты с четырьмя, шестью или восемью двигателями F-1 в первой ступени (проект «Нова») будут иметь полезную орбитальную нагрузку соответственно 113, 170 и 227 т. Реализация подобных проектов позволит обойтись одной ракетой при создании крупных ОКС.

Контуры ракеты-носителя «Сатурн» в трехступенчатом варианте показаны на рис. 11.

Рис. 11. Трехступенчатая ракета «Сатурн»: 1 — центральный бак; 2 — наружный бак; 3 — поворотный двигатель; 4 — неподвижный двигатель; 5 — тормозные посадочные двигатели; 6 — обтекатель

В конструктивном отношении наиболее интересна первая ступень, которая представляет собой самую сложную и дорогостоящую часть всей ракеты-носителя. Используемая во всех вариантах ракеты и имеющая специальную парашютную, роторную или парусную систему приземления, она может быть применена многократно. Эта система, обеспечивающая постепенное гашение скорости и плавную посадку, в парашютном варианте состоит из восьми тормозных пороховых двигателей нескольких парашютов и большого надувного баллона для посадки на воду.

По мнению конструкторов, возможность многократного применения первой ступени носителя существенно снизит общие затраты на запуск и выведение на орбиту космических аппаратов.

Конструктор ракет Браун, например, считает, что сохранение первой ступени для изучения узлов ракеты «Сатурн» даст больше данных, чем телеметрическая информация, полученная через 1000 каналов во время запуска.

Данные табл. 3 обращают наше внимание на то, что двигатели первой ступени работают на хорошо освоенном топливе (керосин плюс жидкий кислород), а в двигателях всех последующих ступеней в сочетании с кислородом используется более эффективное горючее — жидкий водород.

Почему же водородно-кислородные двигатели, применение которых явится важным шагом вперед в строительстве ЖРД, ставятся лишь на верхние ступени ракеты-носителя «Сатурн»?

Прежде всего это выгодно с энергетической точки зрения. Дело в том, что энергия газовой струи, истекающей из сопла ракетного двигателя, наиболее полно используется тогда, когда скорость истечения близка к скорости полета.

Если скорость истечения больше скорости полета, покидающая ракетный двигатель струя газов уносит с собой и рассеивает в пространстве некоторый избыток энергии. По-другому ведет себя выходящая из сопла струя, когда скорость истечения продуктов сгорания меньше скорости ракеты: струя как бы «волочится» за ракетой и «притормаживает» ее.

При запуске орбитального тела скорость ракеты-носителя увеличивается от нуля до первой космической, что при скорости истечения w = 2500 м/сек соответствует изменению отношения скорости движения к скорости истечения от нуля примерно до трех. Отсюда следует, что топлива, дающие большие скорости истечения (таким топливом и является водород, у которого w = 4000 м/сек), рациональнее всего применять на верхних ступенях, работающих при высоких скоростях полета. Первая же ступень большую часть времени работает при скоростях полета значительно меньших скорости истечения, и повышать их невыгодно из-за роста перегрузок и сопротивления атмосферы. Заметим, что применение водорода на верхних ступенях существенно снижает потребную тягу первой ступени. Так, при проектировании ракетной

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату