К.п.д. солнечных батарей невелик, он не превышает пока 11–13 %. Это значит, что с 1 м2 современных солнечных батарей снимается, мощность около 100–130 вт. Правда, есть возможности увеличения к.п.д. солнечных батарей (теоретически до 25 %) за счет совершенствования их конструкции и улучшения качества полупроводникового слоя. Предлагается, например, накладывать две или несколько батарей одну на другую так, чтобы нижняя поверхность использовала ту часть спектра солнечной энергии, которую пропускает, не поглощая, верхний слой.
К.п.д. батареи зависит от температуры поверхности полупроводникового слоя. Максимальный к. п. д. достигается при 25 °C, а при увеличении температуры до 30 °C к.п.д. уменьшается почти вдвое. Солнечные батареи выгодно применять, так же как аккумуляторы, для небольших потребляемых мощностей тока из-за большой площади их поверхности и высокого удельного веса. Для получения, например, мощности 3 квт требуется батарея, состоящая из 100 000 элементов с общим весом около 300 кг, т. е. при удельном весе 100 кг/квт. Такие батареи займут площадь более 30 м2.
Тем не менее солнечные батареи прекрасно зарекомендовали себя в космосе как достаточно надежный и стабильный источник энергии, способный работать очень длительное время.
Главную опасность для солнечных батарей в космосе представляют космическая радиация и метеорная пыль, вызывающие эрозию поверхности кремниевых элементов и ограничивающие срок службы батарей.
Для небольших обитаемых станций этот источник тока, видимо, будет оставаться единственно приемлемым и достаточно эффективным, но крупные ОКС потребуют иных источников энергии, более мощных и с меньшим удельным весом. При этом необходимо учесть трудности получения с помощью солнечных батарей переменного тока, который потребуется для больших научных космических лабораторий.
ЯДЕРНЫЕ ИСТОЧНИКИ ПИТАНИЯ
Применение энергии ядерного распада дает в отличие, например, от солнечных источников питания качественно иные типы космических электростанций длительного действия. Дело в том, что источники энергии, космических ядерных установок (реактор или радиоактивный изотоп) не получают эту энергию из космоса, a являются как бы аккумуляторами. В то же время ядерный реактор не является непосредственно источником электроэнергии. Реактор или изотоп — это мощный источник тепла. Получение электрического тока в ядерном источнике питания сводится к преобразованию тепловой энергии в электрическую.
Ядерный источник энергии будет находиться непосредственно на борту ОКС, а это дает возможность получать энергию практически непрерывно и независимо от каких-либо внешних факторов.
Здесь мы не будем останавливаться на принципе действия и устройстве ядерного реактора, об этом написано достаточно много и обстоятельно. Рассмотрим лишь некоторые способы преобразования тепловой энергии в электрическую.
Турбогенераторная установка с ядерным реактором считается одной из наиболее перспективных систем для длительного применения в космосе, поэтому рассмотрим ее подробнее.
На рис. 31 показана принципиальная схема такой установки, с теплопередающим агентом и рабочим телом которой является жидкость.

Выделяющееся в ядерном реакторе тепло воспринимается теплоносителем первичного контура. Нагретая до высокой температуры жидкость поступает в теплообменный аппарат — кипятильник, где отдает свое тепло рабочему телу вторичного контура. После этого первичный теплоноситель насосом высокого давления перегоняется снова в реактор.
Основной рабочий цикл установки осуществляется во вторичном контуре. Рабочее тело (также жидкость) сначала нагревается до температуры кипения в кипятильнике, а затем здесь же полностью испаряется. Пар, который поступает на рабочие лопатки паровой турбину, приводит во вращение обыкновенный машинный электрогенератор. Отработанный пар по выходе из турбины поступает в холодильник, где полностью конденсируется, т. е. снова превращается в жидкость.
Как мы уже говорили, единственным способом отдача тепла в окружающее пространство в космосе является радиационное излучение. Поэтому холодильником любой космической установки является излучатель тепла. Рабочее тело, пришедшее к первоначальному жид-кому состоянию, перегоняется насосом снова в кипятильник. На этом цикл основного рабочего контура замыкается.
Схема, в которой основное рабочее тело не нагревается непосредственно в реакторе, а воспринимает тепло через промежуточный теплоноситель, называется двухконтурной.
Возможно применение и одноконтурной схемы теплопередачи, в которой нет первичного контура и рабочее тело нагревается и испаряется не в кипятильнике, а непосредственно в каналах тепловыделяющих элементов реактора.
Очевидно, что одноконтурная схема проще и легче, так как в ней нет теплообменного аппарата — кипятильника и магистралей первичного контура. Кроме того, при такой схеме можно было бы значительно увеличить съем тепла с тепловыделяющей поверхности реактора, получить более высокую температуру цикла, а следовательно, и больший к.п.д. Но несмотря на все эти преимущества, одноконтурную схему нельзя применить для ОКС. Главная причина — засорение теплоносителя системы радиоактивными продуктами распада и возникновение так называемой наведенной активности в элементах конструкции установки. А это влечет за собой увеличение веса антирадиационной защиты для экипажа и, кроме того, делает в значительной мере невозможным ремонт и профилактику установки в условиях эксплуатации. При двухконтурной схеме основное рабочее тело не имеет непосредственного контакта с ядерным реактором и вторичный контур системы вполне доступен для обслуживания.
Реальное осуществление космической электротурбоустановки с ядерным реактором связано с выбором подходящего рабочего тела для основного (вторичного) контура.
В наземных атомных электростанциях с турбогенератором в качестве рабочего тела применяется вода. Но высокая коррозионная активность, большие давления пара (до 280 атм и более), высокая наведенная радиоактивность, а главное, низкие максимальные температуры цикла (не выше 300 °C) делают воду совершенно неприменимой для космических энергоустановок.
Наилучшие свойства имеют жидкометаллические теплоносители. Жидкие металлы: ртуть, натрий, калий, рубидий, цезий и некоторые другие — обладают очень высокой теплопроводностью, большой скрытой теплотой парообразования, небольшими давлениями паров при высоких температурах, что и оправдывает их широкое распространение в конструктивных разработках ядерных турбогенераторных установок. Антикоррозионные свойства и наведенная активность их также вполне приемлемы.
Принципиально турбогенераторная схема может осуществляться не только на парах жидких металлов, но и с газом в качестве рабочего тела — по так называемому циклу Брайтона, т. е. как газотурбинная установка, в состав которой вместо насоса входит компрессор. Но такая схема при некоторых преимуществах (более высокие температуры и высокие эксплуатационные качества) имеет очень существенные недостатки, в частности очень большой удельный вес.
Конструктивное решение турбогенераторной ядерной установки можно рассмотреть на примере разработанной в США системы SNAP-2 с электрической мощностью 3 квт (рис. 32).
