еще в 1910 году включился в поиск новой теории гравитации. В частности, он выяснял, способны ли предложенные теории объяснить неньютоново движение Меркурия, и знал, что не способны. Поэтому успех Эйнштейна, объяснившего это астроявление в 1915 году, был для него важнейшим событием, поднявшим авторитет германского физика до небес. И когда Эйнштейн дерзнул и необъятные небеса объял физической теорией, де Ситтер присоединился первым. Он, правда, счел неубедительными упрощения Эйнштейна и придумал свое, астрономически резонное: если плотность вещества во Вселенной столь мала, то почему не предположить для упрощения, что ею можно вовсе пренебречь, то есть считать плотность вещества нулевой. Соответствующее решение, при наличии космологической постоянной, давало вполне определенную и весьма особую геометрию пространства-времени, которую надо было изучать и прикладывать к астрономическим наблюдениям.
Говорить о геометрии в отсутствии вещества было, однако, выше сил физика Эйнштейна, и он решение де Ситтера не принял всерьез. А впоследствии считал введение космологической константы своей ошибкой. И оказался неправ — сегодняшние космологи не мыслят своей науки без величины, которая у них, правда, перестала быть универсальной константой, и в ней появилась физическая начинка, но это — уже другая история и пока еще не история науки, а ее сегодняшний день.
Физики ценят великих коллег не за их ошибки. А историкам дороги и ошибки, если они помогают понять драматизм истории открытий, сделанных живыми людьми, которым тоже свойственно ошибаться.
Выясняя физику Вселенной, Эйнштейн следовал своему принципу делать все как можно проще, но не проще, чем надо. Однако незаметно нарушил его — переупростил Вселенную. Пять лет спустя это понял российский математик Александр Фридман.
Александр Фридман: «Вселенная не стоит на месте»
Весной 1922 года в главном физическом журнале того времени — «Zeitschrift fьr Physik» появилось обращение «К физикам Германии». Правление Германского физического общества сообщало о трудном положении коллег в России, которые с начала войны не получали немецких журналов. Поскольку лидировала тогда физика немецкоязычная, речь шла о жестоком информационном голоде. У немецких физиков просили публикации последних лет для пересылки в Петроград.
В том же самом журнале, двадцатью пятью страницами ниже, помещена статья, полученная из Петрограда и противоречащая призыву о помощи. Имя автора — Александра Фридмана — физикам было неизвестно, но статья с названием «О кривизне пространства» претендовала на многое. Автор утверждал, что решения Эйнштейна и де Ситтера, опубликованные за пять лет до того, не единственно возможные, а лишь весьма частные случаи, что плотность, постоянная по всему пространству, вовсе не обязана быть постоянной во времени. Именно в этой статье впервые сказано о «расширении Вселенной». Астрономическим фактом оно станет семь лет спустя; еще предстоит измерять и вычислять, сколько миллиардов лет расширение длилось и каково расстояние до космического горизонта, но горизонт науки расширил в 1922 году 34-летний Александр Фридман.
Если, набравшись смелости, уподобить Вселенную маятнику, то решения космологической задачи, полученные Эйнштейном и де Ситтером, можно сопоставить положениям маятника в покое. Таких положений два: когда маятник просто висит и когда он стоит «вверх ногами». А Фридман обнаружил, что вселенский маятник вовсе не обязан покоиться, ему гораздо естественней двигаться. И рассчитал закон движения на основе уравнений Эйнштейна. При этом показал, что движение возможно и при равной нулю космологической константе. Вселенная может и расширяться и сжиматься в зависимости от ее плотности и скорости в некий момент. Итак,
Уподобим теперь Вселенную резиновому шарику, помня суть эйнштейновской теории гравитации — связь кривизны пространства-времени и состояния вещества. Эйнштейн, можно сказать, обнаружил, как радиус шарика связан с плотностью и упругостью резины. Начал он с шарика, радиус которого постоянен.
Упрощение задачи — один из главных инструментов теоретика. В потемках незнания иногда ищут ключ под фонарным столбом лишь потому, что в других местах искать невозможно. Как ни странно, подобные поиски бывают успешны. Решать сложные уравнения для произвольного случая не под силу даже автору уравнений. Эйнштейн начал с простейшего случая — с максимально однородной геометрии, хотя наблюдения астрономов в 1917 году не говорили об однородности вещества во Вселенной.
Зато второе его предположение — о неподвижности шарика — выглядело столь же очевидным, как и постоянство звездного неба. Только на фоне неподвижных звезд астрономам удалось изучить движение планет, а физикам найти управляющие этим движением законы. И наконец, вечность Вселенной привычно от имени науки противостояла религиозной идее о сотворении мира.
На эту аксиому и поднял руку Фридман.
Вернемся к резиновому, точнее к Риманову, шарику Вселенной, который Эйнштейн взял в руки в 1917 году. Сделав свои упрощающие предположения, Эйнштейн с огорчением обнаружил, что никакого шарика в его руках на самом-то деле нет, есть только бесплотные аксиомы. Он обнаружил, что уравнения гравитации, выстраданные им два года назад, не имеют ожидаемого решения! Помочь ему мог любой ребенок, знающий, что настоящая жизнь резинового шарика начинается, если его надуть. Но Эйнштейн — недаром великий физик — и сам додумался до этого. Добавленная им в уравнения космологическая постоянная стала тем воздухом, упругость которого уравновесила упругость вселенского шарика.
Познакомившись с космологией Эйнштейна, Фридман оценил грандиозность поставленной физической задачи, однако математическое ее решение вызвало у него сомнения. Конечно, маятник может пребывать в покое, но это лишь частный случай его общего колебательного движения. Или на языке математики: у дифференциального уравнения, каким было и уравнение гравитации Эйнштейна, обычно бывает целый класс решений, зависящих от начальных условий.
В своей статье Фридман и показал, как меняется сферическое пространство-время в соответствии с его «упругостью», определяемой уравнением Эйнштейна. В одном из возможных решений радиус Вселенной возрастал, начиная с нулевого значения, до некоторой максимальной величины, а затем опять уменьшался до нуля. А что такое сфера нулевого радиуса? Ничто! И Фридман написал:
Пользуясь очевидной аналогией, будем называть промежуток времени, за которое радиус кривизны от 0 дошел до
Легко так сказать математику, но для физика Эйнштейна результат был настолько странным, что… он ему не поверил, нашел мнимую ошибку в вычислениях и сообщил об этом в краткой заметке в том же журнале. Лишь получив письмо от Фридмана и проделав еще раз вычисления, Эйнштейн признал результаты русского коллеги и в следующей заметке назвал их «проливающими новый свет» на космологическую проблему. Для историков же ошибка Эйнштейна проливает свет на масштаб работы Фридмана.
Эйнштейн о работе А. Фридмана
Замечание к работе А. Фридмана «О кривизне пространства» (18.09.1922)