живых организмов все еще работают в наших клетках. Не было ни одного разрыва или фатальной ошибки в цепи жизни. Но бессмертие в прошлом, как скажет вам любой биржевой брокер, не гарантирует бессмертия в будущем.

Предком не так то просто стать. На страже стоит естественный отбор и отсеивает все слабые звенья цепи. Если бы это было не так, эволюция утратила бы свою адаптивную прогрессивность. Если человечество проживет еще миллион лет, генетического следа многих из тех, кто живет сегодня, не будет в будущем. Ряд генетических ветвей усохнут и сломаются, не оставив потомков. Когда-нибудь человек как вид может исчезнуть с лица Земли. Большинство видов на Земле существовали не более 10 млн лет, и многие не оставили после себя никаких дочерних видов. Нашему виду уже около 5 млн лет, и никаких новых видов людей от нас пока не произошло. Если человечество погибнет, то все наши гены исчезнут и никогда больше не повторятся. Но пока существует жизнь на Земле, у всех живых организмов будут родители и предки, уходящие беспрерывной цепью вглубь времен к самому первому организму, появившемуся на нашей планете.

Но если геном бессмертен, почему умирает тело? Четыре миллиарда лет не затерли «текст» генома (во многом благодаря тому, что он записан в цифровой форме), но каждый год жизни делает наше тело менее гибким и подвижным. Менее 50 циклов делений хватает для того, чтобы оплодотворенная клетка превратилась в организм, и еще 100 циклов делений обеспечивают регенерацию кожи и органов у взрослого человека в течение всей его жизни. Есть старая сказка о восточном императоре, который решил одарить ученого математика за услугу всем, что тот пожелает. Математик попросил положить на первую клеточку шахматной доски одно зернышко риса, на вторую — два, на третью — четыре, на четвертую — восемь и т. д. Императору показалось, что он легко рассчитается с мудрецом, но для заполнения 64 клеток ему понадобилось бы около 20 миллионов миллионов миллионов миллионов зернышек риса. Несмотря на все богатства императора, задача оказалась невыполнимой. Так же и с клетками тела человека. Яйцеклетка делится один раз, затем каждая дочерняя клетка делится опять и т. д. На 47-м цикле деления тело будет состоять более чем из 100 триллионов клеток. Поскольку многие клетки органов скоро прекращают делиться, для наполнения тела необходимым количеством клеток требуется около 50 циклов делений. Однако некоторые клетки продолжают делиться всю жизнь, обеспечивая регенерацию тканей и органов. В течение жизни человека такие клетки проходят более сотни циклов деления, но потом умирают. Сотни операций копирования вымарывают «текст» генома. Но ведь мы только что сказали, что 50 млрд операций копирования за всю историю жизни на Земле не испортили «текст» самых первых генов. В чем же разница?

По крайней мере часть ответа на этот вопрос кроется в хромосоме 14 в виде гена TEP1. Продуктом этого гена является белок, который входит в состав одной из самых удивительных биохимических машин — теломеразы. Отсутствие теломеразы в клетках ведет к старению. Добавление теломеразы делает некоторые клетки бессмертными.

История началась в 1972 году с подачи одного из первооткрывателей структуры ДНК — Джеймса Уотсона (James Watson). Уотсон заметил, что белковая машина копирования ДНК, называемая полимеразой, не может начать считывание ДНК с самого начала. Молекуле полимеразы сначала нужно прикрепиться к цепи ДНК, в результате какая-то часть нуклеотидов оказывается за активным центром полимеразы и не копируется. Каждый раз скопированный текст становится чуть короче оригинала. Представьте себе копировальную машину, которая обеспечивает идеальное качество, но всегда начинает копирование текста со второй строки и заканчивает на предпоследней строке. Единственный способ справиться с такой ненормальной машиной — это заполнить первую и последнюю строки бессмысленными повторами букв, которые не жалко потерять. Именно так и поступают хромосомы. Каждая хромосома представляет собой длинную страницу текста, который копируется полимеразой полностью, за исключением самого начала и самого конца. Поэтому на своих концах хромосомы содержат бессмысленный текст более чем из тысячи повторов «фразы» TTAGGG. Эти повторяющиеся фрагменты ДНК называются теломерами. Благодаря наличию теломер на концах хромосомы неуклюжесть полимеразы не приводит к потере жизненно важной информации. Как металлический наконечник на конце шнурка, теломеры предохраняют хромосому от изнашивания.

Но каждый раз после копирования хромосомы число теломер на концах уменьшается. После снятия сотни копий хромосома становится настолько короткой, что под угрозой оказываются важные гены. В среднем теломерные концы хромосомы уменьшаются на 31 «букву» в год, но в тканях с высокой скоростью деления концы хромосом «сгорают» значительно быстрее. Вот почему клетки стареют и умирают к определенному возрасту. Возможно, по этой же причине стареет и наше тело, хотя по данному вопросу между учеными продолжаются жаркие споры. К восьмидесяти годам на концах хромосом остается в среднем 5/8 от числа теломер, которые были при рождении[131].

Но почему гены не теряются в яйцеклетках и сперматозоидах, прародителях всех остальных клеток организма? В этих клетках неустанно работает теломераза, наращивания горящие концы хромосомы за счет добавления новых теломер. Теломераза, обнаруженная в 1984 году Кэролом Грейдером (Carol Greider) и Элизабет Блэкберн (Elizabeth Blackburn), оказалась затейливым созданием. Это соединение содержит в себе молекулу РНК, которая используется в качестве шаблона для копирования теломер, а сам белок очень напоминает уже известную вам обратную транскриптазу, благодаря которой ретровирусы и транспозоны приумножают свое число (см. главу 9). Одни считают теломеразу предшественницей всех ретровирусов и транспозонов, исходной системой копирования РНК в ДНК. Другие рассматривают теломеразу как реликт РНК-овой эпохи жизни на Земле — первый организм, в основе которого лежал комплекс из молекул РНК и белка[132].

Еще следует отметить одну интересную особенность: «фраза» TTAGGG, которая повторяется несколько тысяч раз на концах хромосом, совершенно одинакова у всех млекопитающих. Более того, она одинакова у всех животных и грибов, начиная от простейшей трипаносомы, вызывающей сонную болезнь, или плесени Neurospora. У растений эта «фраза» отличается лишь дополнительной буквой T в начале: TTTAGGG. Совпадение не случайно. Теломераза использовалась еще у самых древних организмов, и шаблонная РНК с тех пор почти не изменилась. Интересный факт, у реснитчатых простейших — шустрых инфузорий, покрытых пропеллерами ресничек, — для теломеразы используется несколько иной текст: TTTTGGGG или TTGGGG. Другая особенность реснитчатых простейших состоит в варьировании генетического кода, постоянного для всех остальных организмов. Все больше накапливается данных, свидетельствующих, что инфузории выпадают из общего ствола жизни. Мое личное мнение состоит в том, что они произошли от самых первых форм жизни, возможно, еще до появления бактерий. Вполне вероятно, что инфузории являются живыми ископаемыми, произошедшими непосредственно от Луки — общего предка всех живых организмов. Хотя, соглашусь, за этой версией пока нет экспериментально подтвержденных фактов[133].

Как это не иронично, но теломераза была выделена и хорошо изучена не у человека, а как раз у инфузорий. Нам до сих пор не известно, какие белки объединяются вместе в составе теломеразы у человека. Вполне вероятно, что теломераза млекопитающих может сильно отличаться от теломеразы инфузорий. Некоторые скептики называют теломеразу «мифическим ферментом», поскольку ее так трудно выделить из клеток человека. У инфузорий, хранящих свои гены на тысячах маленьких хромосом, на концах каждой из которых расположены теломеразы, выделить этот фермент значительно проще. Ген теломеразы млекопитающих был впервые найден канадскими учеными в базе данных генов мыши но аналогии с геном инфузорий. Затем уже похожий ген был обнаружен в геноме человека. Группа японских ученых определила место гена теломеразы на хромосоме 14. Гену было присвоено имя TEP1, что означает первый теломеразный белок (first telomerase-associated protein). Хотя этот белок действительно является необходимой составной частью теломеразы, похоже, что обратная транскриптазная активность восстановления концов хромосом связана не с ним. Уже найден подходящий кандидат на эту роль, но нахождение гена на хромосомах человека на момент написания этой книги еще не было установлено[134].

Сейчас уже известны все гены теломеразы у человека: TEP1, TER (template-containing telomerase RNA — шаблонная РНК теломеразы) и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату