начиненную контейнерами с полезной нагрузкой. Это ротор. Он также равен длине экватора.
По окончании загрузки из большего трубопровода с помощью высокопроизводительных насосов откачивается воздух, между трубами создается чрезвычайно высокое разрежение, почти полный вакуум.
Вдоль вакуумированной трубы на эстакаде идет статор линейного электродвигателя. Здесь же специальная магнитная система, при включении которой ротор-кольцо с полезным грузом, предназначенным для выведения в космос, отрывается от стенки трубы и зависает в ее центре. Эта система магнитного подвеса и удержания — подобная тем, что испытываются на современных поездах на магнитной подушке, — исключает возможность касания ротором стенок трубы на участках ее изгиба, например, когда эстакада пересекает впадину или возвышенность.
Теперь давайте посмотрим, как эта удивительная машина действует. Кольцо ротора, как мы помним, своеобразным поясом плотно охватывает поверхность Земли. А теперь предположим, что длина окружности этого кольца начнет увеличиваться. Что при этом произойдет? Соответственно, начнет расти и диаметр кольца, оно начнет отрываться от поверхности Земли, тем больше удаляясь от нее, чем больше станет разница в длинах окружностей.
— Но ведь кольцо стальное, не резиновое, — резонно скажете вы. — Как же может оно растягиваться? И какая сила его растянет?…
Верно — не резиновое. Но ведь растягиваться может и сталь. И не так уж мало — на 12–35 процентов от своей первоначальной длины. Расчет же показывает: чтобы каждая точка планетарного кольца удалилась от его поверхности на 100 км, вполне достаточно, если длина его окружности возрастет всего лишь на 1,6 процента.
А растянуть кольцо могут центробежные силы, которые появятся, если его раскрутить.
Теперь, когда мы немного разобрались в теории, давайте посмотрим, как все это может выглядеть на практике.
Корпус ротора надо сделать двойным: наружный слой — из металла высокой проводимости: меди, алюминия, а еще лучше — из сверхпроводящего материала; внутренний — из стали или другого прочного материала.
Статором же этого всепланетного электродвигателя, как мы говорили, послужит эстакада. Именно на ее обмотки будет подан переменный ток, который породит бегущее вдоль ротора магнитное поле. Оно наведет в его наружном слое поперечные электрические токи, взаимодействующие с бегущим магнитным полем статора. В результате возникнет сила, направленная по продольной оси ротора. Находящееся в вакууме кольцо придет в движение.
Каждый его погонный метр, согласно расчету, имеет вес 20–30 кг; стало быть, общая масса разгоняемого кольца составляет около миллиона тонн. Поэтому время разгона «вселенского поезда» до первой космической скорости будет значительно: в зависимости от мощности источников электропитания оно может составить от нескольких дней до 2–3 недель. Но, представим, нужная скорость достигнута.
Притяжение Земли и центробежные силы уравновешены; для ротора-кольца наступила невесомость. Однако линейные электродвигатели продолжают разгон. Центробежные силы растут, ротор стремится к подъему, но система магнитной центровки продолжает удерживать его от касания — теперь уже с верхней частью трубы.
Давление по мере дальнейшего разгона все нарастает и нарастает. И вот наконец достигнута стартовая скорость — 10 км/с! Отключаются источники электропитания, отходят в сторону державшие вакуумированную трубу замки, и она с несущимся внутри кольцом отрывается от эстакады и начинает уходить вверх, движимая центробежными силами.
«А если электропитание ненароком отключилось? — спросите вы. — Тогда магнитный подвес перестает работать, ротор рвется кверху, касается трубы и — авария: мгновенно плавятся стенки, нарушается вакуум!..»
Нет, этого не случится. Чтобы излишне не загромождать техническое описание разгонной системы, мы намеренно опустили одну деталь. Кроме ротора, в большей трубе — на ее внутренних стенках — имеется устройство автономного магнитного подвеса. Его питание происходит за счет частичного торможения ротора в процессе подъема всей конструкции: кинетическая энергия трансформируется в электричество. Так что центровка продолжает сохраняться.
И вот планетарных размеров «бублик», растягиваясь, продолжает удаляться от земной поверхности. Но герметичность его сохраняется, ведь удлинение конструкции, как мы помним, относительно небольшое, чуть больше процента, и никаких перенапряжений вакуумная оболочка не испытывает, воздух в нее не проникнет.
Когда же атмосфера остается внизу, срабатывают пирозаряды, оболочка раскрывается подобно двустворчатой ракушке, и ее фрагменты опускаются на парашютах для повторного использования. Освобожденный ротор, растягиваясь далее, продолжает набирать высоту.
По своей конструкции он состоит из отдельных участков-контейнеров, соединенных друг с другом специальными калибровочными стержнями. Когда ротор достигает расчетной высоты, разрывные силы превышают прочность соединяющих стержней и кольцо разъединяется на фрагменты. Эти цепочки контейнеров начинают, так сказать, самостоятельную, жизнь на орбите; появляется множество спутников, каждый груз используется по своему назначению.
А можно, в принципе, оставить все кольцо в целости. И тогда вокруг Земли появится своеобразное ожерелье — бывший «вселенский поезд» превратится в «кольцеград». А рядом с ним со временем появится другой, третий… В космосе смогут жить и работать множество людей. Работы же для них — непочатый край.
От прожектов к проектам
Мечтать, конечно, неплохо. Ну, а что думают по этому поводу серьезные специалисты? Летчик- космонавт, доктор технических наук К. П. Феоктистов считает, что многие проекты выглядят вполне реалистично.
«Вначале люди поселятся в станциях типа „Скайлэб“ или „Салют“ и начнут строить энергоспутники, — пишет он. — На первых порах все необходимое для первой колонии в 5 тысяч человек привезут с Земли. Для этого понадобится около 400 полетов в течение 6 лет. Экспедиции обойдутся примерно в 8 миллиардов долларов. Потом люди переселятся в промежуточные станции. После постройки системы энергоспутников и космических фабрик звездные пионеры „переедут“ в большие комфортабельные станции».
Здесь, пользуясь даровой энергией солнца, отсутствием тяжести, они будут выращивать ценнейшие кристаллы для микроэлектронной промышленности и изготовлять невиданные на Земле сплавы, получать сверхчистые вещества и вести практически в идеальных условиях астрономические исследования. Найдется также работа на орбите и биологам, медикам, генетикам…
Впрочем, не будем забывать, орбитальные станции пытались приспособить для своих целей не только гражданские специалисты, но и военные.
И ТУТ ВЕРНЕР ФОН БРАУН. Одним из первых о целесообразности базирования на околоземной орбите целого гарнизона заговорил создатель ракет Третьего рейха Вернер фон Браун. В одной из своих статей он прямо указывал, что орбитальную станцию можно использовать или как заатмосферную обсерваторию, или как ракетно-ядерную базу для нанесения внезапных ударов из космоса.
Впрочем, именно на военном применении он особо не настаивал. Прежде всего потому, что его статьи, которые были озвучены им же в виде докладов на Первом симпозиуме по проблемам космического полета, проходившем 12 октября 1951 года в планетарии Нью-Йорка, предназначались в первую очередь для широкой публики. В марте 1972 года они были изданы в американском журнале «Кольерс» и привлекли внимание многих читателей благодаря прекрасным иллюстрациям Чеслея Бонестелла.
Для военных читателей у Брауна были другие идеи и другие формы изложения. Он надеялся, что, несмотря на его прошлое, военно-промышленный комплекс все же проявит к ним интерес. Не случайно же