Еще 31 июля 1960 года «Комсомольская правда» опубликовала статью ленинградского инженера Юрия Арцутанова. Именно в ней впервые рассказывалось о принципе действия «внеземного» подъемника.
Потом идею подхватили другие специалисты, а всем известный английский писатель-фантаст Артур Кларк подробно описал ее в своем романе «Фонтаны рая».
Внешне все выглядит вроде бы просто. Главный элемент подъемника — трос, один конец которого крепится на поверхности Земли, другой — теряется в далеком космосе на высоте около 100 тысяч км (это примерно четверть расстояния до Луны). Причем, несмотря на то что второй конец троса может быть попросту оставлен в пространстве, он будет натянут, как струна.
Вся хитрость в том, что, подчиняясь законам физики, трос этот окажется под воздействием двух могучих разнонаправленных сил.
Чтобы понять их природу, вспомним доморощенный опыт. Привяжите к бечевке какой-нибудь предмет и начинайте раскручивать его. Как только предмет приобретет некую скорость, веревка тут же натянется. Почему? Да потому, что на предмет действует центробежная сила. А на саму веревку — сила центростремительная, которая и натягивает ее.
Нечто подобное произойдет и с поднятым в космос тросом. Любой объект на его верхнем конце или даже сам свободный конец будет вращаться подобно искусственному спутнику нашей планеты. Стало быть, на этот конец будет действовать центробежная сила. Одновременно на тот же трос будет действовать и противоположная сила — земного притяжения. И тем ощутимее, чем ближе он находится к Земле. А чем дальше в космос, тем, наоборот, энергичнее проявляется центробежный фактор. При определенных условиях две противоположные силы уравновешивают друг друга. Происходит это, когда центр массы гигантского каната находится на высоте 36 тысяч км, то есть на так называемой геостационарной орбите.
Именно гам находящиеся искусственные спутники висят неподвижно над Землей, совершая вместе с ней полный оборот за 24 часа. Вот из этой как бы срединной точки лифтовый канат и должен идти вниз, к Земле. В этом случае огромный кабель будет не только натянут, но и сможет постоянно занимать строго определенное положение — вертикально к земному горизонту, точно по направлению к центру нашей планеты.
А дальше, используя эту рукотворную вертикаль, можно отправлять кабины в космос и опускать их на Землю.
Именно этот способ путешествия в космос и был описан в романе Артура Кларка, вышедшем в свет в 1978 году. Идея Арцутанова, таким образом, приобрела всемирную известность. Вот только воплотить в жизнь ее почему-то никто не торопился. А все потому, что в схеме имелось одно слабое звено. Неизвестно было, на чем подвешивать кабину космического лифта. Если использовать обычный стальной трос, то простейший расчет показывал: он порвется под воздействием собственной тяжести уже при длине 50 км.
Артур Кларк в своем романе предложил заменить сталь на легкий и очень прочный кевлар. Однако, во-первых, где взять такое количество дефицитного и достаточно дорогого материала? А во-вторых и в главных, даже при изобилии кевлара длину каната можно увеличить лишь на сотню-другую километров, то есть достичь орбит низко летящих спутников. На большее и прочности кевлара не хватит…
Это, кстати, понимал сам писатель. Потому придумал некий сверхпрочный «псевдоодномерный алмазный кристалл», который стал основным строительным материалом. Один из героев романа, инженер Морган, поясняет, что такой кристалл не есть абсолютно чистый углерод, «тут есть дозированные микровключения некоторых элементов». И добавляет, что производство таких кристаллов возможно только в невесомости, где нет тяжести, нарушающей кристаллическую решетку.
Самое интересное, что Кларк почти угадал. Нынешний этап интереса к проекту строительства космического лифта связан именно с углеродными кристаллами, хотя и несколько иного вида.
В 1991 году японский инженер Сумио Иишима, исследуя графитовую сажу, открыл нечто удивительное — так называемые углеродные нанотрубки. Это микроскопические, не различимые невооруженным глазом пленочки графита, свернутые в виде крохотных цилиндров.
Диаметр каждой такой трубки в миллион раз меньше миллиметра, длина — всего нескольких микрон. Казалось бы, какой от них прок? Однако вскоре выяснилось, что цилиндрики могут самостоятельно сплетаться в такие же микроскопические канатики. Изготовленная же из них нить прочнее алмаза. Почти невесомая паутинка из углеродных нанотрубок диаметром в один миллиметр может выдержать 20-тонный груз!
Имея такой удивительный материал, можно уже и подумать о строительстве космического лифта в обозримом будущем.
Во всяком случае, после открытия японского инженера проектом занялись не только фантасты, но и ученые с инженерами. Скажем, Институт перспективных концепций НАСА выделил компании «Highlift Systems» 570 тысяч долларов на первоначальные исследования.
Ныне закончен первый этап исследований. В отчете, включающем 80 страниц убористого текста, а также многочисленные чертежи и графики, сказано однозначно: проект вполне может быть осуществлен практически. Во всяком случае, один из его авторов, доктор Брэдли Эдвардс, твердо уверен в успехе. По его мнению, при соответствующем финансировании уже через два года можно будет начать строительство стартовых сооружений.
Причем осуществление этого проекта грозит обернуться немалой экономией средств. Дело в том, что ныне доставка 1 кг полезного груза в космос обходится не менее 10 тысяч долларов, причем подъем на высокую, геостационарную орбиту обходится даже в 40 тысяч. Космический подъемник предполагает снижение стоимости доставки до 100 долларов, т. е. в 100–400 раз. И это только на первом этапе…
Благодаря такой системе доставки грузов станут рентабельными орбитальные заводы для производства уникальных лекарств и специальных материалов, строительство в космическом пространстве солнечных электростанций и туристических гостиниц, бурное развитие космического туризма.
Но пока все это — далекие мечты, осуществление которых зависит от того, как пойдут дела со строительством первого космического лифта. Его концептуальный проект в нынешнем виде содержит достаточно подробные конструкторские разработки. Вот как проясняет некоторые технологические подробности сам доктор Эдвардс на своем сайте в Интернете.
Прежде всего ныне он предлагает отказаться от строительства на Земле огромной башни, высотой 50 км, как это мыслилось в предыдущих проектах. Сооружение такой Вавилонской башни не только значительно удорожает проект, но и во многом ставит под сомнение его исполнение, ведь ни у кого нет опыта строительства башен, достигающих стратосферы.
Сам Эдвардс предлагает сделать наземной станцией для космического лифта океанскую платформу — наподобие тех, с которых ведут добычу нефти. Ее можно построить в Тихом океане, в таком районе, где практически не бывает гроз.
Вместо троса, как уже говорилось, будет использоваться широкая лента из углеродных нанотрубок. Длина ленты — почти 100 тысяч километров (ею можно два с половиной раза обернуть земной шар), ширина — 1 м. Даже при планируемой толщине ленты всего в 2 микрона общая масса, учитывая гигантскую длину этой необычной «дорожки», должна получиться довольно солидной — около 800 тонн. Тем не менее, как показывает расчет, нанотрубки должны выдержать такую тяжесть.
Перед тем как развернуть сверхтонкую и сверхдлинную ленту Земля-космос, планируется провести