Этот закон является простейшим законом, описывающим непрерывным образом формирование новых структур.
Существуют и другие дифференциальные уравнения, решения которых дают функции, позволяющие смоделировать плавный переход из одного состояния в другое. В частности, при анализе роста и размножения биологических объектов нами было получено дифференциальное уравнение d?/dt
= -?ln
?,
обладающее теми же стационарными точками, что и логистическое уравнение, но позволяющее вместе со своим аналогом, итерационным соотношением со степенной правой частью единым образом описывать рост и размножение объектов.
Во многих случаях процесс роста сложных систем происходит не непрерывно, а путём размножения элементов системы или поглощения растущей системой новых элементов. Если скачки параметра целого малы, то в первом приближении этот дискретный процесс может быть заменён непрерывным, и для его описания может быть использован аппарат дифференциальных уравнений, в противном случае для описания динамики роста и стабилизации структур может быть использован аппарат итерационных соотношений.
Устойчивые стационарные точки фазовой плоскости или графика, представляющего решение системы итерационных соотношений, обычно являются пределом, к которому стремятся фазовые траектории системы. Такие точки называются аттракторами.
Аттракторами могут быть не только устойчивые стационарные точки, но и замкнутые траектории циклического типа (циклы и торы). В последние годы открыты и в настоящее время интенсивно изучаются ациклические аттракторы, названные странными.
Следующим этапом исследования является численное решение полученных уравнений. Численное решение совместно с качественным анализом позволяет строить не только зависимость меры от времени, которая была в прошлом, и сопоставить полученные данные с результатами наблюдений, но и предсказывать характер этой зависимости, которого следует ожидать в будущем.
Однако, учитывая наши предыдущие рассуждения, можно утверждать, что точное определение параметра целого системы в подавляющем большинстве случаев невозможно. Любое детерминированное математическое описание, использующее дифференциальные уравнения или итерационные процессы должно сопровождаться дополнительным к нему вероятностным описанием, характеризующим меру и характер распределения отклонения реальной величины параметра целого от его расчётного значения. Существование такой двойственности приводит к необходимости рассмотрения третьей величины, характеризующей структуру и её модель. Этой величиной может являться соотношение мер, определяемое некоторой функцией от параметра целого и меры его вариации. Элементы указанной триады в зависимости от ситуации и способа рассмотрения могут меняться местами.
Глава 3. Фазовое пространство динамической системы
Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.
Величина Xi,i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х1, Х2, …).
Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.
Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф (Х0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х0 в момент времени t0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф-1 (Х, Х0).
Предположим, что мы знаем состояние динамической системы в момент Tn, соответствующее точке Хn, и хотим определить состояние той же системы Xn+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим Xn+1= Ф (Х0, Тn+1) = Ф(Х0,Tn + (?T)n) = Ф {X0, [Ф-1(X0, Хn) + (?Tn]}.
Введем понятие оператора F, определяющего изменение системы Х во времени: Хn+1 = F(Xn). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Хn в момент времени Tn в её состояние Хn +1 в момент времени Tn+1.
В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.
Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.
Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.
В настоящее время бурно развивается теория «странных» непериодических аттракторов, породившая новую терминологию: каскад бифуркаций, числа Фейгенбаума, фрактальная геометрия, множество Мандельброта, показатели Ляпунова.
Рассматриваются различные сценарии перехода от регулярного движения системы к детерминированному хаосу:
1. через каскад бифуркаций удвоения периода устойчивых циклов Фейгенбаума;
2. через разрушение неустойчивого трёхмерного тора с образованием странного аттрактора по сценарию Рюэля-Такенса;