методы дифференциального исчисления. Письма Архимеда, которые он писал Конону после своего возвращения в Сиракузы, не сохранились, зато мы располагаем текстами пяти писем, посланных Архимедом ученику Конона Досифею (как раз в первом из них Архимед выражает соболезнование по случаю смерти Конона, последовавшей примерно в 240 г.). Каждое из писем есть законченная научная работа. Об одной из них («О спиралях») только что было сказано, в других же («О квадратуре параболы», два письма «О шаре и цилиндре», «О коноидах и сфероидах») Архимед вычисляет площади и объемы различных геометрических фигур, развивая метод «исчерпывания» Эвдокса и фактически подходя к понятию определенного интеграла. В этих работах Архимед предстает перед нами в качестве величайшего математика древности, предугадавшего будущее развитие методов математического анализа.

Из других дошедших до нас математических сочинений Архимеда следует назвать «Измерение круга», где вычисляется приближенное значение отношения длины окружности к диаметру (число я)[99], и позднюю работу «Псаммит» (примерный перевод «Исчисление песчинок»), уже в древности завоевавшую большую популярность. В «Псаммите» Архимед разрабатывает систему классификации больших чисел. Эта классификация, кажущаяся нам теперь неоправданно сложной, заканчивается числом, которое в нынешних обозначениях может быть записано так: 108*10^15. Громадность этого числа должна была поражать воображение древних, не привыкших оперировать с очень большими числами. По сравнению с ним количество песчинок, которые заполнили бы пустую сферу, равновеликую сфере неподвижных звезд, оказалось, согласно расчетам Архимеда, равным неизмеримо меньшему числу — 1063.

Не все математические сочинения Архимеда дошли до нашего времени. Некоторые известны нам в изложениях средневековых арабских ученых, от других сохранились лишь заглавия. Что же касается работ Архимеда, относящихся к механике, в том числе его знаменитого (предсмертного) трактата «О плавающих телах», то о них речь пойдет ниже в специальной главе.

Почему мы так много пишем об Архимеде в связи с александрийской математической школой? Да потому, что фактически, как математик, он принадлежал к этой школе, хотя большую часть своей жизни прожил в Сиракузах. Он получал импульсы от работ александрийских математиков, он развивал разрабатывавшиеся александрийцами проблемы и методы, наконец, он находился в постоянном творческом общении с учеными, работавшими в III в. в Александрии. Помимо Конона и Досифея, здесь надо назвать Эратосфена, занимавшего при Птолемее III Эвергете (246–222) и при Птолемее IV Филопаторе (222—205) пост главного библиотекаря.

Эратосфен из Кирены (около 275–195 гг.) был во многом примечательными человеком и ученым, воплотившим в своем лице некоторые характерные черты александрийской науки. В молодости он учился у знаменитого александрийского поэта Каллимаха, затем провел несколько лет в Афинах, где общался с представителями ведущих философских школ, в том числе с академиком Аркесилаем стоиком Аристоном Хиосским. Вернувшись в Александрию, он занялся научными изысканиями и вскоре приобрел репутацию одного из ученейших людей своего времени, что побудило Птолемея Эвергета предложить ему заведование александрийской Библиотекой (после того как предыдущий главный библиотекарь, поэт Аполлоний, уехал на остров Родос).

Отличительной особенностью Эратосфена-ученого была универсальность, что делает невозможным точное определение его научной специальности. У него были исследования по математике, астрономии, географии, истории и филологии; кроме того, он сам писал стихи и поэмы. В каждую из этих областей он внес определенный вклад, хотя, может быть, и не всегда первостепенный по своему научному или художественному значению. В истории науки особенно известны его работы по географии и по измерению размеров земного шара. Об этих работах у нас пойдет речь в последующих главах, здесь же мы вкратце изложим то, что нам известно о его достижениях в области математики и исторической хронологии.

К сожалению, тексты сочинений самого Эратосфена до нас не дошли. Позднейшие античные авторы (Никомах, Теон Смирнский, Папп) приводят в своих книгах названия двух трактатов Эратосфена — «О средних» (Περί μεσοτήτων) и «Платоник» (Πλατωνικός). Более или менее краткие изложения первого из них позволяют заключить, что в нем Эратосфен исследовал различные виды целочисленных пропорций, сводя их путем различных преобразований друг к другу. Трактат начинался с философского введения, в котором утверждалось, что «отношение есть источник пропорциональности и начало возникновения всего, что происходит в порядке. Все пропорции возникают из отношений, а источник всех отношений есть равенство»[100]. Аналогичные, характерные для позднего Платона идеи развивались, по-видимому, и в диалоге «Платоник», хотя конкретное его содержание остается загадочным. Кроме того, еще в древности получили известность два математических открытия Эратосфена. Первым из них было механическое решение так называемой «делийской» задачи об удвоении куба, высеченное на камне в одном из александрийских храмов. По- видимому, не случайно Архимед изложил свой «механический» метод доказательств геометрических теорем в письме, адресованном именно к Эратосфену. Вторым открытием александрийского энциклопедиста было так называемое «решето» (κόσκινον) — простой способ выделения простых чисел из любого конечного числа нечетных чисел, начиная с трех. Этот способ изложен Никомахом из Геразы, написавшим около конца I в. н. э. «Введение в арифметику» (Εισαγωγή αριθμητική), в котором были популярно пересказаны достижения греческой науки в этой области.

В целом можно сказать, что в области математики Эратосфен отнюдь не был творческим гением, прокладывавшим, подобно Архимеду, новые пути, хотя и находился в курсе достижений современной ему математической науки.

Помимо математических работ (Эратосфена, имеет смысл упомянуть о его изысканиях в области исторической хронологии. Для греков классической эпохи было характерно удивительное равнодушие к проблемам хронологии: пи у кого из ученых V–IV вв., включая даже Аристотеля, мы не найдем хронологических отсылок, которые позволили бы устанавливать точные даты исторических событий. Отчасти это можно объяснить отсутствием общепринятой системы летосчисления в ту эпоху, что, в свою очередь, вызывалось разрозненностью греческих городов-государств. В централизованных деспотических монархиях Вавилонии и Египте уже за тысячелетия до нашей эры существовали хорошо разработанные системы записей исторических событий в их хронологической последовательности. В этой связи характерно, что в основу первого общегреческого летосчисления, ставшего общепринятым, были положены олимпийские игры — единственное регулярно повторявшееся событие, в котором принимали участие все полисы Балканского полуострова[101].

Интерес к хронологии в широком смысле слова появился лишь у ученых эллинистической эпохи. Уже Деметрий Фалерский составил «Список архонтов», в котором наряду с историческими сведениями сообщались некоторые данные о жизни философов, использованные последующими хронографами. Но лишь Эратосфен предпринял первую серьезную попытку пересмотреть и систематизировать всю имевшуюся к тому времени информацию хронологического характера. Имея в качестве материала для своих изысканий все богатства Библиотеки, Эратосфен провел колоссальную работу по нахождению и сопоставлению источников, по устранению неверных сведений и по установлению надежных дат. Таким образом, именно Эратосфена следует считать основоположником научной хронологии.

Основное сочинение Эратосфена по этим вопросам (Χρονογραφίαι) было в древности окружено ореолом непогрешимости, но в то же время, по-видимому, имело слишком специальный характер, чтобы получить широкое распространение. Содержащиеся в нем сведения с добавлением новых данных были затем использованы историком II в. Аполлодором, написавшим большую дидактическую поэму (Χρονικά), в которой ямбическими триметрами излагалась вся история Греции от падения Трои (приуроченного на основании вычислений Эратосфена к 1184 г.) до 149 г. Все последующие авторы, включая Диогена Лаэртия, пользовались именно этой поэмой, а не исходным сочинением Эратосфена.

Младшим современником Эратосфена и Архимеда был александрийский математик Никомед. Время его жизни определяется двумя указаниями: с одной стороны, он критикует предложенный Эратосфеном

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату