IV в. Эвдоксом. О Эвдоксе надо сказать несколько слов, поскольку он, бесспорно, был ведущей фигурой в греческой науке того времени. Он был исключительно разносторонним ученым, оставившим после себя труды по философии, географии, музыке, медицине, но нам он известен прежде всего как математик и астроном, причем самые большие его достижения относятся, по-видимому, к математике. Его «метод исчерпываниям заложил основы теории пределов и подготовил почву для позднейшего развития математического анализа, а глубина его теории отношений, базировавшейся на новом определении понятия величины, была по-настоящему оценена лишь во второй половине XIX в., когда трудами Дедекинда и других математиков была создана теория вещественпых чисел. К сожалению, ни одно его сочинение до нас не дошло, и сведения о его достижениях известны нам исключительно из вторичных источников.

О жизни Эвдокса позднейшие авторы сообщают следующие сведения[198]. Родился он в Книде около 400 г. до н. э. В молодости он изучал математику у Архита в Таренте и медицину у Филистиона в Сицилии. В возрасте двадцати трех лет он прибыл в Афины и, будучи очень бедным, поселился в гавани Пирея, откуда ежедневно ходил пешком в платоновскую Академию и обратно. Позднее при содействии друзей он совершил путешествие в Египет, где набирался астрономических знаний у жрецов Гелиополя. Вернувшись в Грецию, он основал собственную школу в Кизике (на южном берегу Мраморного моря). Получив широкую известность, Эвдокс еще раз побывал в Афинах, где беседовал с Платоном на философские темы. Умер он пятидесяти трех лет от роду на своей родине, в Книде.

Мы не знаем, создал ли Эвдокс свою астрономическую теорию по непосредственному поручению Платона, или пришел к ней самостоятельным путем. Геометрическая модель космоса, разработанная Эвдоксом, получила наименование модели гомоцентрических сфер. Она была изложена в сочинении Эвдокса «О скоростях» (Περί ταχών), ее существо известно нам из двенадцатой книги «Метафизики» Аристотеля и более детально — от Симпликия.

Следуя своему обыкновению, Аристотель не вдается в детали теории Эвдокса, ограничиваясь всего лишь несколькими, правда важными и точными, указаниями. Он говорит также о тех видоизменениях, которые были внесены в модель Эвдокса Каллиппом, а затем излагает свою собственную модель, в некоторых существенных пунктах отличавшуюся от модели Каллиппа[199] .

Дошедшие до нас комментарии к «Метафизике» не дают никакой новой информации о модели Эвдокса по сравнению с той, которая содержится в тексте самого Аристотеля. Это относится как к комментариям Александра Афродисийского, так и к тому изложению «Метафизики», которое принадлежало Фемистию и дошло до нас в переводах на сирийский, арабский и еврейский языки.

Иное дело — Симпликий. В комментариях к трактату «О небе» (где, кстати сказать, о моделях космоса ничего не говорится) Симпликий приводит пространные выдержки из сочинения перипатетика II в. н. э. Сосигена «О круговращениях» (Περί των άνελιττουσων), относящиеся к теориям Эвдокса и Каллиппа[200]. В свою очередь, Сосиген имел своим источником «Историю астрономии» (Αστρολογική ΐοτορία) ученика Аристотеля Эвдема, а тот уже пользовался оригинальными текстами астрономов, о которых он писал. Работы Эвдема и Сосигена также утеряны, поэтому, комментарии Симпликия наряду с «Метафизикой» остаются основным источником сведений о модели гомоцентрических сфер Эвдокса.

Поскольку изложение Симпликия (или Сосигена) не отличается особой четкостью и лишено пояснительных чертежей, оно требует тщательного изучения. Эта работа была выполнена историками астрономии XIX в. н. э.; среди них особо надо отметить выдающегося итальянского астронома Скиапарелли, который дал исчерпывающую, хотя и не во всех деталях одинаково убедительную реконструкцию модели Эвдокса[201]. Во всяком случае, основные идеи теории Эвдокса представляются нам теперь достаточно ясными.

В основе всех гомоцентрических моделей лежит представление о том, что космос состоит из ряда сфер или оболочек, обладающих общим центром, который совпадает с центром земного шара. Снаружи космос ограничен сферой неподвижных звезд, совершающей оборот вокруг мировой оси в течение суток. Движение каждого из семи небесных тел — Луны, Солнца и пяти планет — описывается независимой системой взаимосвязанных сфер, каждая из которых вращается равномерно вокруг своей оси; однако направление этой оси и скорость вращения могут быть различными для различных сфер. Соответствующее небесное тело прикреплено к экватору самой внутренней из сфер данной системы; ось этой сферы жестко связана с двумя точками следующей по порядку сферы и т. д. Таким образом, любая сфера участвует в движении всех внешних по отношению к ней сфер и в то же время увлекает своим движением ближайшую к ней внутреннюю сферу. Самая внешняя сфера совершает суточное круговращение, совершенно аналогичное вращению сферы неподвижных звезд. Следующая за ней сфера вращается в противоположном направлении, вокруг оси, перпендикулярной к плоскости эклиптики. Число прочих сфер и характер их движения выбираются таким образом, чтобы результирующее движение связанного с ними небесного тела (точнее говоря — проекция этого движения на сферу неподвижных звезд) максимально точно отображало видимое движение данного тела по небесному своду.

Теперь посмотрим, каким образом эти общие принципы применялись Эвдоксом к каждому из семи небесных тел, движение которых он хотел воспроизвести с помощью своей модели.

Для Луны Эвдокс предположил существование трех сфер. Внешняя из них совершает один оборот вокруг мировой оси в течение суток, двигаясь с востока на запад. Полюса второй сферы жестко связаны с двумя точками первой сферы таким образом, что эта сфера, участвуя в движении первой сферы, в то же время вращается вокруг оси, перпендикулярной к кругу зодиака (т. е. к плоскости эклиптики) и проходящей через центр этого круга. Вращение второй сферы противоположно по направлению вращению первой сферы, т. е. направлено с запада на восток. Ось третьей сферы, к экватору которой прикреплена Луна, имеет небольшой наклон по отношению к оси второй сферы; при этом третья сфера медленно вращается с востока на запад (т. е. в том же направлении, что и первая сфера). Симпликий разъясняет, что функция третьей сферы состоит в том, чтобы объяснить, почему Луна не всегда находится в плоскости эклиптики, а отклоняется от нее то к северу, то к югу, причем точки максимального отклонения не всегда находятся в одних и тех же знаках зодиака, а медленно перемещаются с востока на запад. Угол наклона третьей сферы, говорит Симпликии, определяется максимальным отклонением Луны от плоскости эклиптики. Мы знаем, что это отклонение составляет примерно 5°; оно, по-видимому, было хорошо известно греческим астрономам эпохи Эвдокса.

Симпликий ничего не говорит о периодах вращения второй и третьей сфер. Для второй сферы этот период был, очевидно, ранен лунному месяцу, но какому месяцу — синодическому, сидерическому или драконическому? И было ли в то время известно различие между этими тремя месяцами? Естественно также предположить, что период вращения третьей сферы у Эвдокса соответствовал полному периоду регрессии лунных узлов, длительность которого приблизительно равна 18 с половиной годам. При таком допущении, однако, получится, что в течение девяти с лишним лет Луна находится к северу от эклиптики, а потом в течение такого же промежутка времени — к югу от нее. Это ни в какой мере не соответствует наблюдаемому движению Луны. Мог ли Эвдокс совершить подобную ошибку?

Учитывая это обстоятельство, Скиапарелли в своей реконструкции теории Эвдокса предположил, что изложение Симпликия (а тем самым и Сосигена) содержит серьезные неточности. Движение Луны будет описываться гораздо правильнее, если мы предположим, что вторая сфера движется (как и первая) с востока на запад с периодом вращения, равным 18 с половиной годам, при сохранении, однако, предположения, что эта сфера вращается вокруг оси, перпендикулярной к плоскости эклиптики. Что касается третьей сферы, то она, согласно Скиапарелли, вращается с запада на восток с периодом, равным одному драконическому месяцу, причем ее ось составляет с осью второй сферы угол, равный 5°. В этой реконструкции вторая лунная сфера оказывается ответственной за регрессию лунных узлов, а третья — за месячное перемещение Луны по поясу зодиака.

Реконструкция Скиапарелли была принята большинством историков науки, в том числе Дюэмом, Хитом, Дрейером[202]. Действительно, она представляет собой

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату