как рентгенология, бухгалтерия, расчет налогов, графический дизайн и в особенности все виды информационных технологий, уже активно отдаются на офшоринг в Индию и другие страны. Эта тенденция будет только расти, и, как я отмечал ранее, там, где появляется офшоринг, зачастую следом идет автоматизация.
Автоматизация «программируемых» профессий тесно связана со сферой искусственного интеллекта. Когда большинство из нас думает об искусственном интеллекте, мы моментально переносимся в мир научной фантастики. Вспоминаются роботы C-3PO и R2D2 из сериала «Звездные войны» или, возможно, компьютер ХAЛ 2000 из «Космической одиссеи-2001». В результате мы получаем ложное представление о том, что вместо замены людей роботы станут похожими на них и в конечном счете даже смогут имитировать человеческие эмоции.
Но ведь это неправда. Очень часто можно услышать фразу «Мне не нравится моя профессия» или «Я работаю, чтобы жить, и только». Насколько вы сами, как обычный человек, любите свою работу? Вне работы вы можете читать книги, слушать определенный вид музыки. Возможно, у вас есть хобби или увлечение. А может быть, вы серьезно переживаете из-за политики или окружающей среды. Вы, безусловно, много заботитесь о своих детях, семье и близких людях. Все эти особенности формируют вашу личность. Передача подобных черт в роботе до сих пор остается в области научной фантастики.
Для осознания того, как искусственный интеллект работает в реальном мире, давайте разберем пример компьютерных шахмат. В 1989 г. Гарри Каспаров, чемпион мира по шахматам, провел матч против специального компьютера Deep Thought. Он был разработан совместными усилиями университета Карнеги – Меллон и компании IBM. Каспаров с легкостью победил машину за две партии.
В 1996 г. Каспаров столкнулся с новым компьютером под названием Deep Blue, разработанным IBM. И вновь Каспаров одержал победу. В 1997 г. IBM предприняла новую попытку с усовершенствованной версией компьютера Deep Blue, который в конечном счете обыграл Каспарова за шесть партий. Впервые в истории машина одержала победу над игроком-человеком.
С тех пор компьютерные шахматы продолжают развиваться. В 2006 г. другой чемпион мира по шахматам, Владимир Крамник, проиграл немецкой компьютерной программе Deep Fritz. В то время как Deep Blue от IBM был полностью заказным компьютером размерами с холодильник, Deep Fritz – это программа, которая может работать на компьютере с двумя стандартными процессорами Intel. Вполне очевидно, что в ближайшем будущем такие программы, как Deep Fritz, работающие практически на любом недорогом ноутбуке, будут способны обыграть даже самых лучших шахматистов мира.
Если задуматься над тем, что нужно человеку, чтобы стать чемпионом мира по шахматам, большинство согласится, что для этого требуется определенный уровень творческой способности, как минимум в пределах установленных правил. Однако едва ли машине можно приписать такую черту, как творческие способности, даже если эта машина может одержать победу над игроком в шахматы. Отсутствие интереса к достижениям машин, возможно, связано с тем, что работа человеческого мозга остается для нас загадкой.
Кто может объяснить, что происходит в голове у шахматиста, когда он играет очередную партию? Мы просто не знаем этого. Именно поэтому это кажется загадочным. Но в случае с компьютером мы четко знаем, что происходит. Компьютер просто просчитывает миллионы различных возможных ходов и затем выбирает самый лучший. Он использует алгоритм
Если вы согласны с тем, что игра в шахматы требует креативности в пределах установленных правил, тогда нельзя ли подобное сказать и о юридической сфере? В настоящее время в США работают тысячи юристов, которые очень редко посещали зал суда либо вообще там никогда не бывали. Такие юристы заняты в сферах правовых исследований и договоров. Они работают в юридических фирмах и проводят большую часть времени в библиотеке или изучают правовые базы данных на своих компьютерах. Они занимаются судебной практикой и пишут резюме, где обобщают похожие судебные дела и юридические стратегии в прошлом. Они пересматривают договоры и ищут там лазейки. Они также предлагают возможные стратегии и правовое обоснование для новых дел своих фирм.
С учетом предыдущих глав первой на ум приходит идея о том, что работа этих правоведов уже является объектом офшоринга. И это правда: в Индии уже существуют команды юристов, которые специализируются на исследовании судебной практики, но не своей страны, а США.
А как насчет автоматизации? Может ли компьютер справиться с работой юриста? Одним из первых направлений в исследовании искусственного интеллекта было создание «умных» алгоритмов, при помощи которых можно быстро найти, оценить и обобщить информацию. Результат этой работы мы можем наблюдать каждый раз, когда используем Google или любой другой мощный сервер поиска в интернете. Можно предположить, что такие умные алгоритмы будут повсеместно использоваться в сфере юридических исследований. Программное обеспечение может вначале играть роль инструмента для повышения производительности и облегчения работы юристов, а затем успешно перерасти во всеобщую автоматизацию.
Очевидно, что некоторые аспекты работы юриста автоматизировать проще, чем другие. Например, поиск и обобщение прецедентного права, имеющего отношение к делу, может стать начальным этапом автоматизации. И как я уже отмечал, говоря о рентгенологии, автоматизация даже части работы правоведов в скором времени приведет к уменьшению их числа. А как насчет более сложных или творческих аспектов профессии юриста? Сможет ли компьютер выработать стратегию при ведении важного судебного дела?
В настоящее время это проблематично, однако, как и в случае с шахматами, алгоритм полного перебора в конечном счете может сработать. Если компьютер способен оценивать миллионы возможных ходов в шахматах, почему бы ему не повторить это действие со всеми известными судебными делами со времен выступлений Цицерона в Римском форуме?
И будет ли это «меньшей» формой юридической креативности? Возможно и так. Но разве это имеет значение для работодателя специалистов по части юриспруденции?
Несмотря на то что практическое применение искусственного интеллекта до сих пор опирается на принцип полного перебора, никак нельзя сказать, что это единственный подход, применяемый в данной сфере. Очень важная сфера исследования связана с идеей создания
Когда речь идет о юристах и рентгенологах, вероятно, в глаза бросается то, что они хорошо зарабатывают. Средний заработок рентгенолога в США составляет более 300 тыс. долл. В принципе, можно с уверенностью заявить, что «программируемые» профессии (или профессии работников умственного труда), как правило, высокооплачиваемы. Для бизнеса это создает стимул к офшорингу, а затем, если это возможно, к автоматизации этих профессий. Кроме этого, можно утверждать, что практически нет взаимосвязи между тем, сколько практики требуется человеку и как сложно автоматизировать его профессию. Для того чтобы стать юристом или рентгенологом, нужно в обоих случаях иметь высшее образование и ученую степень, но это все равно не будет сдерживать автоматизацию. Ведь относительно просто запрограммировать накопленные знания в алгоритм или внести их в базу данных.
Для работников умственного труда это вдвойне плохие новости. Их профессии не только становится потенциально проще автоматизировать, поскольку не нужны вложения в механическое оборудование, но также имеется материальная заинтересованность в том, чтобы избавиться от профессий с высокой оплатой труда. В результате можно ожидать, что в будущем автоматизация существенно затронет работников