количество людей, на которых оказывает влияние лидер мнений, в три раза превышает число тех, на кого оказывает влияние среднестатистический человек. Интуиция подсказывает, что при прочих равных косвенное воздействие лидера мнений также затронет в три раза больше людей. Другими словами, лидер мнений будет иметь, что называется, «мультипликационный эффект» три. Закон малого числа тем временем утверждает: эффект должен быть гораздо сильнее — то есть «эта диспропорция становится более выраженной»{132}. Мы же обнаружили, что мультипликационный эффект для такого типа лидеров был, как правило, меньше трех, иногда — гораздо меньше, а во многих случаях и вовсе отсутствовал.
И вот почему: когда влияние распространяется через некий процесс заражения, итоговый эффект, как правило, намного больше зависит от общей структуры сети, нежели от качеств самих людей. Как масштабы лесного пожара зависят от ветра, температуры, низкой влажности и наличия горючих материалов, так и социальные эпидемии требуют соблюдения определенных условий. Как выяснилось, это условие не имеет никакого отношения к горстке влиятельных людей. Как раз наоборот: все дело в наличии критической массы
В некотором отношении в этом нет ничего удивительного. Услышав о большом лесном пожаре, например, мы ведь не думаем, что в искре, которая его спровоцировала, было нечто особенное. Такая идея просто смешна. Но когда в социальном мире случается нечто особенное, мы тут же приходим к мысли: кто бы ни явился причиной, этот человек непременно должен быть особенным. Каждый большой каскад в наших симуляциях, разумеется, обязательно кто-то инициировал. И каким бы заурядным ни был этот человек раньше, он оказался подходящим под описание закона малого числа: «крошечный процент людей, которые выполняют большую часть работы». Впрочем, наши симуляции четко показали, что ничего особенного на самом деле в этих личностях
«Рядовые лидеры» на Twitter
Как тут же было подмечено, этот вывод целиком и полностью основывался на компьютерных симуляциях. Последние представляли собой (в силу необходимости) крайне упрощенные версии реальности и предполагали большое количество допущений, любое из которых могло оказаться ложным. Они — полезные инструменты, способные дать уникальную информацию. Но в конечном счете эти симуляции больше похожи на умозрительные, чем на реальные эксперименты и потому лучше подходят для постановки новых вопросов, а не поиска ответов на уже существующие. Так, если мы хотим узнать, способны ли конкретные люди на стимулирование диффузии идей, информации и, в итоге, воздействия, — и если эти влиятельные люди существуют, какие свойства отличают их от «обычных», — эксперименты нужно проводить в реальном мире. Однако на практике изучать взаимоотношения между индивидуальными влияниями и воздействием в широких масштабах безумно сложно.
Главная загвоздка — в огромных массивах данных, большинство которых очень трудно собрать. Продемонстрировать, что один человек повлиял на другого, — уже проблематично. А если требуется