Тетлок, количественные прогнозы они делали не лучше неспециалистов — а то и хуже{182}. Основная проблема с опорой на экспертов, однако, состоит не в том, что они заметно хуже не-экспертов, а в том, что, поскольку они специалисты, мы склонны консультироваться только с одним из них за раз{183}. Гораздо разумнее узнать многие отдельные мнения — экспертов или не-экспертов — и вычислить среднее{184}. Грубо говоря, это и позволяют делать рынки предсказаний — равно как и опросы общественного мнения. При всех своих «прибамбасах» первые дают прогнозы чуть точнее вторых, но разница между ними гораздо менее существенна, чем польза от простого усреднения множества мнений. И наоборот, на основе статистических данных можно непосредственно оценить относительную важность различных предикторов — что и делает статистическая модель. Искусная, конечно, работает чуть лучше простой, но различие, опять-таки, незначительно {185}. В конце концов, как модели, так и толпа выполняют, по сути, одно и то же. Во-первых, для выявления релевантных прогнозу факторов они опираются на некую версию человеческого суждения, а во-вторых, оценивают и взвешивают относительную важность каждого из этих факторов. Как сказал однажды психолог Робин Дауэс, «весь фокус в том, чтобы знать, на какие переменные смотреть, и уметь их складывать»{186}.

Вместо того чтобы выискивать некий идеальный метод, гораздо целесообразнее просто определить, какие предсказания могут быть сделаны с минимальной ошибкой, а какие нет. При прочих равных, например, чем больше времени отделяет прогноз результата от самого события, тем большей окажется неточность. Все просто: какие методы ни используй, спрогнозировать потенциальный кассовый сбор фильма на стадии одобрения проекта гораздо труднее, чем за неделю или две до его премьеры. Кроме того, одни вычисления даются легче других, и с этим ничего не поделаешь. Как быть? Можно использовать любой из нескольких методов — или даже все вместе, как сделали это мы в исследовании рынков предсказаний, — и следить за их эффективностью в течение некоторого времени. Как я упоминал в начале предыдущей главы, отслеживание прогнозов не приходит само собой: мы делаем множество оных, но редко проверяем, насколько часто они оказываются верными. А ведь это — самое главное! Лишь установив степень точности, характеризующей те или иные предсказания, можно определить, какое значение следует им придавать{187}.

Когда будущее не такое, как прошлое

Как ни старайся, основное ограничение всех без исключения методов прогнозирования заключается в следующем: они надежны, только если в будущем случатся события того же типа, что и в прошлом, и с той же средней частотой{188}. Вне финансовых кризисов кредитные компании могут весьма точно спрогнозировать уровни невыплаты кредитов. Поведение отдельных людей сложно и непредсказуемо, но эти показатели на нынешней неделе, по сути, те же, что и на прошлой, — а значит, модели здесь работают достаточно хорошо. Но, как указывает ряд критиков прогнозирующего моделирования, многие события, интересующие нас больше всего, — начало финансового кризиса, возникновение революционной новой технологии, крах диктатуры или резкое снижение уровня преступности — интересны как раз потому, что они не такие, как в прошлом. В этих ситуациях опора на статистические данные приводит к серьезным проблемам.

Оглядываясь назад: модели, использовавшиеся многими банками для ценоопределения ипотечных деривативов до финансового кризиса 2008 года, — как печально известные ОДО[37] — чересчур сильно опирались на данные из недавнего прошлого, в течение которого цены на жилье только росли. Как результат, и аналитики и трейдеры существенно занизили вероятность общенационального снижения цен на недвижимость и, как следствие, крайне недооценили риск невыплат ипотечных кредитов и конфискации имущества{189}. В ретроспективе

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату